We research and develop algorithms for continuous optimization, with a particular emphasis on solving high-dimensional optimization problems with first-order methods. We prove convergence rates and guarantees for a variety of settings, such as:
Conditional gradient aka Frank-Wolfe methods, which perform constrained optimization by accessing the feasible set via a linear optimization oracle.
Proximal methods, which yield efficient algorithms for nonsmooth optimization and practically reshape smooth ones.
Online learning algorithms which consist of playing a sequential game in which the algorithms predict and receive a loss in an online way and try to minimize overall regret; they have numerous applications to optimization via reductions.
Accelerated methods which combine online learning tools with other optimization techniques to exploit and improve convergence of other more simple algorithms, often to optimality.
And block-iterative algorithms which leverage parallelism and distributed computation for faster algorithmic performance.
Motivated by nonsmooth problems in machine learning, we solve the problem of minimizing an abs-smooth function subject to closed convex constraints. New theory and algorithms are developed using linear minimization oracles to enforce constraints and abs-linearization methods to handle nonsmoothness.
We will investigate mixed-integer optimization with convex objectives using error-adaptive convex solvers in branch-and-bound. Focusing on improving lower bounds and balancing computational costs, we aim to develop a faster branch-and-bound methodology by leveraging modern MILP techniques and error-adaptive methods. Key aspects include warm-starting and controlled inexactness in early termination.
We develop theory and algorithms for 0-1 decision making in optimization problems constrained by partial differential equations. By exploring extended formulations, we achieve new stationarity concepts through sequential exact and approximative relaxation of adjoint-based primal-dual optimality conditions.
In this project, we study algorithms that promote sparsity. We develop PageRank optimization algorithms that scale with solution sparsity and investigate Riemannian optimization using manifold geometry. Additionally, we develop algorithms for efficient fair resource allocation based on established fairness axioms.
Worst-case complexity bounds are increasingly insufficient to
explain the (often superior) real-world performance of
optimization and learning algorithms. We consider
data-dependent rates, approximation guarantees, and complexity
bounds to provide guarantees much more in line with actual
performance.
Bounding Geometric Penalties in First-order Riemannian Optimization by Christophe Roux
Seminar "Modern Methods in Applied Stochastics and Nonparametric Statistics"
Carderera, A., Besançon, M., and Pokutta, S. (2024). Scalable Frank-Wolfe on Generalized Self-concordant Functions Via Simple Steps. SIAM Journal on Optimization, 34(3), 2231–2258.DOI: 10.1137/23M1616789[arXiv][summary][slides][poster][code][BibTeX]
Braun, G., Guzmán, C., and Pokutta, S. (2024). Corrections to “Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization Via Information Theory.” IEEE Transactions on Information Theory, 70, 5408–5409.DOI: 10.1109/TIT.2024.3357200[BibTeX]
Pokutta, S. (2024). The Frank-Wolfe Algorithm: a Short Introduction. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 126(1), 3–35.DOI: 10.1365/s13291-023-00275-x[URL][arXiv][BibTeX]
MartĂnez-Rubio, D., Roux, C., and Pokutta, S. (2024). Convergence and Trade-offs in Riemannian Gradient Descent and Riemannian Proximal Point. Proceedings of the International Conference on Machine Learning.[URL][arXiv][BibTeX]
Wirth, E., Besançon, M., and Pokutta, S. (2024). The Pivoting Framework: Frank-Wolfe Algorithms with Active Set Size Control.[arXiv][BibTeX]
Wirth, E., Pena, J., and Pokutta, S. (2024). Fast Convergence of Frank-Wolfe Algorithms on Polytopes.[arXiv][BibTeX]
Designolle, S., Iommazzo, G., Besançon, M., Knebel, S., Gelß, P., and Pokutta, S. (2023). Improved Local Models and New Bell Inequalities Via Frank-Wolfe Algorithms. Physical Review Research, 5(4).DOI: 10.1103/PhysRevResearch.5.043059[arXiv][slides][code][BibTeX]
Besançon, M., Garcia, J. D., Legat, B., and Sharma, A. (2023). Flexible Differentiable Optimization Via Model Transformations. INFORMS Journal on Computing.DOI: 10.1287/ijoc.2022.0283[URL][arXiv][BibTeX]
Hunkenschröder, C., Pokutta, S., and Weismantel, R. (2023). Minimizing a Low-dimensional Convex Function Over a High-dimensional Cube. SIAM Journal on Optimization, 33(2), 538–552.DOI: 10.1137/22M1489988[arXiv][BibTeX]
Kerdreux, T., Scieur, D., d’Aspremont, A., and Pokutta, S. (2023). Strong Convexity of Feasible Sets in Riemannian Manifolds.[arXiv][BibTeX]
MartĂnez-Rubio, D., and Pokutta, S. (2023). Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties. Proceedings of the Conference on Learning Theory.[URL][arXiv][poster][BibTeX]
Wirth, E., Kera, H., and Pokutta, S. (2023). Approximate Vanishing Ideal Computations at Scale. Proceedings of the International Conference on Learning Representations.[arXiv][slides][BibTeX]
Wirth, E., Kerdreux, T., and Pokutta, S. (2023). Acceleration of Frank-Wolfe Algorithms with Open Loop Step-sizes. Proceedings of the International Conference on Artificial Intelligence and Statistics.[arXiv][BibTeX]
Criscitiello, C., MartĂnez-Rubio, D., and Boumal, N. (2023). Open Problem: Polynomial Linearly-convergent Method for G-convex Optimization? Proceedings of the Conference on Learning Theory.[arXiv][BibTeX]
Kreimeier, T., Pokutta, S., Walther, A., and Woodstock, Z. (2023). On a Frank-Wolfe Approach for Abs-smooth Functions. Optimization Methods and Software.[arXiv][BibTeX]
MartĂnez-Rubio, D., Roux, C., Criscitiello, C., and Pokutta, S. (2023). Accelerated Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties.[arXiv][BibTeX]
MartĂnez-Rubio, D., Wirth, E., and Pokutta, S. (2023). Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond. Proceedings of the Conference on Learning Theory.[arXiv][BibTeX]
Scieur, D., Kerdreux, T., MartĂnez-Rubio, D., d’Aspremont, A., and Pokutta, S. (2023). Strong Convexity of Sets in Riemannian Manifolds.[arXiv][BibTeX]
Wirth, E., Pena, J., and Pokutta, S. (2023). Accelerated Affine-invariant Convergence Rates of the Frank-Wolfe Algorithm with Open-loop Step-sizes.[arXiv][BibTeX]
Woodstock, Z., and Pokutta, S. (2023). Splitting the Conditional Gradient Algorithm.[arXiv][BibTeX]
Wilken, S. E., Besançon, M., KratochvĂl, M., Kuate, C. A. F., Trefois, C., Gu, W., and Ebenhöh, O. (2022). Interrogating the Effect of Enzyme Kinetics on Metabolism Using Differentiable Constraint-based Models. Metabolic Engineering.[BibTeX]
Búi, M. N., Combettes, P. L., and Woodstock, Z. (2022). Block-activated Algorithms for Multicomponent Fully Nonsmooth Minimization. Proceedings of the ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5428–5432.DOI: 10.1109/ICASSP43922.2022.9747479[URL][arXiv][BibTeX]
Besançon, M., Carderera, A., and Pokutta, S. (2022). FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank-Wolfe Algorithms and Conditional Gradients. INFORMS Journal on Computing.[arXiv][summary][slides][code][BibTeX]
Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2022). Restarting Frank-Wolfe. Journal of Optimization Theory and Applications, 192, 799–829.DOI: 10.1007/s10957-021-01989-7[URL][arXiv][slides][BibTeX]
Criado, F., MartĂnez-Rubio, D., and Pokutta, S. (2022). Fast Algorithms for Packing Proportional Fairness and Its Dual. Proceedings of the Conference on Neural Information Processing Systems.[arXiv][poster][BibTeX]
Macdonald, J., Besançon, M., and Pokutta, S. (2022). Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. Proceedings of the International Conference on Machine Learning.[arXiv][poster][video][BibTeX]
Braun, G., Carderera, A., Combettes, C., Hassani, H., Karbasi, A., Mokhtari, A., and Pokutta, S. (2022). Conditional Gradient Methods.[arXiv][BibTeX]
Braun, G., Pokutta, S., and Weismantel, R. (2022). Alternating Linear Minimization: Revisiting von Neumann’s Alternating Projections.[arXiv][slides][video][BibTeX]
Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Approximately Vanishing Ideal. Proceedings of the International Conference on Artificial Intelligence and Statistics.[arXiv][summary][poster][code][BibTeX]
Combettes, C., and Pokutta, S. (2021). Complexity of Linear Minimization and Projection on Some Sets. Operations Research Letters, 49(4).[arXiv][code][BibTeX]
Carderera, A., Besançon, M., and Pokutta, S. (2021). Simple Steps Are All You Need: Frank-Wolfe and Generalized Self-concordant Functions. Proceedings of the Conference on Neural Information Processing Systems, 34, 5390–5401.[URL][arXiv][summary][slides][poster][code][BibTeX]
Kerdreux, T., Roux, C., d’Aspremont, A., and Pokutta, S. (2021). Linear Bandits on Uniformly Convex Sets. Journal of Machine Learning Research, 22(284), 1–23.[URL][arXiv][summary][BibTeX]
Carderera, A., Diakonikolas, J., Lin, C. Y., and Pokutta, S. (2021, February). Parameter-free Locally Accelerated Conditional Gradients. Proceedings of the International Conference on Machine Learning.[arXiv][slides][BibTeX]
Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021, January). Projection-Free Optimization on Uniformly Convex Sets. Proceedings of the International Conference on Artificial Intelligence and Statistics.[arXiv][slides][BibTeX]
Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., and Torrico Palacios, A. (2021). Structured Robust Submodular Maximization: Offline and Online Algorithms. INFORMS Journal on Computing, 33(4), 1259–1684.[URL][arXiv][BibTeX]
Braun, G., and Pokutta, S. (2021). Dual Prices for Frank–Wolfe Algorithms.[arXiv][BibTeX]
Carderera, A., Pokutta, S., Schütte, C., and Weiser, M. (2021). CINDy: Conditional Gradient-based Identification of Non-linear Dynamics – Noise-robust Recovery.[arXiv][BibTeX]
Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021). Local and Global Uniform Convexity Conditions.[arXiv][BibTeX]
Roux, C., Wirth, E., Pokutta, S., and Kerdreux, T. (2021). Efficient Online-bandit Strategies for Minimax Learning Problems.[arXiv][BibTeX]
Combettes, C., and Pokutta, S. (2020, March). Boosting Frank-Wolfe by Chasing Gradients. Proceedings of the International Conference on Machine Learning.[URL][arXiv][slides][code][video][BibTeX]
Diakonikolas, J., Carderera, A., and Pokutta, S. (2020). Locally Accelerated Conditional Gradients. Proceedings of the International Conference on Artificial Intelligence and Statistics.[URL][arXiv][slides][code][BibTeX]
Pokutta, S., Singh, M., and Torrico Palacios, A. (2020). On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. Proceedings of the International Conference on Machine Learning.[arXiv][slides][video][BibTeX]
Carderera, A., and Pokutta, S. (2020). Second-order Conditional Gradient Sliding.[arXiv][code][BibTeX]
Combettes, C., Spiegel, C., and Pokutta, S. (2020). Projection-free Adaptive Gradients for Large-scale Optimization.[arXiv][summary][code][BibTeX]
Braun, G., Pokutta, S., and Zink, D. (2019). Affine Reductions for LPs and SDPs. Mathematical Programming, 173, 281–312.DOI: 10.1007/s10107-017-1221-9[arXiv][BibTeX]
Braun, G., Pokutta, S., and Zink, D. (2019). Lazifying Conditional Gradient Algorithms. The Journal of Machine Learning Research, 20(71), 1–42.[URL][arXiv][BibTeX]
Braun, G., Pokutta, S., Tu, D., and Wright, S. (2019). Blended Conditional Gradients: the Unconditioning of Conditional Gradients. Proceedings of the International Conference on Machine Learning, 97, 735–743.[URL][arXiv][summary][slides][poster][code][BibTeX]
Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., and Torrico Palacios, A. (2019). Structured Robust Submodular Maximization: Offline and Online Algorithms. Proceedings of the International Conference on Artificial Intelligence and Statistics.[URL][arXiv][BibTeX]
Combettes, C., and Pokutta, S. (2019). Blended Matching Pursuit. Proceedings of the Conference on Neural Information Processing Systems.[URL][arXiv][slides][code][BibTeX]
Diakonikolas, J., Carderera, A., and Pokutta, S. (2019). Breaking the Curse of Dimensionality (Locally) to Accelerate Conditional Gradients. Proceedings of the OPTML Workshop Paper.[URL][arXiv][slides][code][BibTeX]
Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2019). Restarting Frank-Wolfe. Proceedings of the International Conference on Artificial Intelligence and Statistics.[URL][arXiv][slides][BibTeX]
Pokutta, S., Singh, M., and Torrico Palacios, A. (2019). On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. Proceedings of the OPTML Workshop Paper.[URL][arXiv][slides][video][BibTeX]
Braun, G., Pokutta, S., and Roy, A. (2018). Strong Reductions for Extended Formulations. Mathematical Programming, 172, 591–620.DOI: 10.1007/s10107-018-1316-y[arXiv][BibTeX]
Le Bodic, P., Pfetsch, M., Pavelka, J., and Pokutta, S. (2018). Solving MIPs Via Scaling-based Augmentation. Discrete Optimization, 27, 1–25.DOI: 10.1016/j.disopt.2017.08.004[arXiv][BibTeX]
Pokutta, S., Singh, M., and Torrico Palacios, A. (2018). Efficient Algorithms for Robust Submodular Maximization Under Matroid Constraints. Proceedings of the ICML Workshop Paper.[URL][arXiv][BibTeX]
Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2017). The Matching Problem Has No Small Symmetric SDP. Mathematical Programming, 165, 643–662.DOI: 10.1007/s10107-016-1098-z[arXiv][BibTeX]
Braun, G., Guzmán, C., and Pokutta, S. (2017). Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization. IEEE Transactions on Information Theory, 63(7), 4709–4724.DOI: 10.1109/TIT.2017.2701343[arXiv][BibTeX]
Braun, G., Pokutta, S., and Zink, D. (2017). Lazifying Conditional Gradient Algorithms. Proceedings of the International Conference on Machine Learning, 70, 566–575.[URL][arXiv][slides][poster][BibTeX]
Braun, G., Jain, R., Lee, T., and Pokutta, S. (2017). Information-theoretic Approximations of the Nonnegative Rank. Computational Complexity, 26, 147–197.DOI: 10.1007/s00037-016-0125-z[URL][BibTeX]
Lan, G., Pokutta, S., Zhou, Y., and Zink, D. (2017). Conditional Accelerated Lazy Stochastic Gradient Descent. Proceedings of the International Conference on Machine Learning.[URL][arXiv][BibTeX]
Roy, A., and Pokutta, S. (2017). Hierarchical Clustering Via Spreading Metrics. Journal of Machine Learning Research, 18, 1–35.[URL][arXiv][BibTeX]
Braun, G., Pokutta, S., and Roy, A. (2016). Strong Reductions for Extended Formulations. Proceedings of the Conference on Integer Programming and Combinatorial Optimization, 9682, 350–361.DOI: 10.1007/978-3-319-33461-5_29[arXiv][BibTeX]
Braun, G., Firorini, S., and Pokutta, S. (2016). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Mathematical Programming, 160(1), 407–431.DOI: 10.1007/s10107-016-0989-3[arXiv][BibTeX]
Braun, G., and Pokutta, S. (2016). Common Information and Unique Disjointness. Algorithmica, 76(3), 597–629.DOI: 10.1007/s00453-016-0132-0[URL][BibTeX]
Braun, G., and Pokutta, S. (2016). A Polyhedral Characterization of Border Bases. SIAM Journal on Discrete Mathematics, 30(1), 239–265.DOI: 10.1137/140977990[arXiv][BibTeX]
Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2016). The Matching Problem Has No Small Symmetric SDP. Proceedings of the Symposium on Discrete Algorithms, 1067–1078.DOI: 10.1137/1.9781611974331.ch75[arXiv][BibTeX]
Braun, G., and Pokutta, S. (2016). An Efficient High-probability Algorithm for Linear Bandits.[arXiv][BibTeX]
Roy, A., and Pokutta, S. (2016). Hierarchical Clustering Via Spreading Metrics. Proceedings of the Conference on Neural Information Processing Systems.[URL][arXiv][BibTeX]
Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2015). Approximation Limits of Linear Programs (beyond Hierarchies). Mathematics of Operations Research, 40(3), 756–772.DOI: 10.1287/moor.2014.0694[arXiv][BibTeX]
Braun, G., Pokutta, S., and Xie, Y. (2015). Info-greedy Sequential Adaptive Compressed Sensing. IEEE Journal of Selected Topics in Signal Processing, 9(4), 601–611.DOI: 10.1109/JSTSP.2015.2400428[arXiv][BibTeX]
Braun, G., Pokutta, S., and Zink, D. (2015). Inapproximability of Combinatorial Problems Via Small LPs and SDPs. Proceedings of the Annual Symposium on Theory of Computing, 107–116.DOI: 10.1145/2746539.2746550[arXiv][video][BibTeX]
Braun, G., and Pokutta, S. (2015). The Matching Polytope Does Not Admit Fully-polynomial Size Relaxation Schemes. Proceedings of the Symposium on Discrete Algorithms, 837–846.DOI: 10.1137/1.9781611973730.57[arXiv][BibTeX]
Braun, G., Firorini, S., and Pokutta, S. (2014). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Proceedings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 28, 515–530.DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.515[URL][arXiv][BibTeX]
Braun, G., Pokutta, S., and Xie, Y. (2014). Info-greedy Sequential Adaptive Compressed Sensing. Proceedings of the Allerton Conference on Communication, Control, and Computing (Allerton), 858–865.DOI: 10.1109/ALLERTON.2014.7028544[arXiv][BibTeX]
Braun, G., and Pokutta, S. (2013). Common Information and Unique Disjointness. Proceedings of the IEEE Symposium on Foundations of Computer Science, 688–697.[URL][BibTeX]
Braun, G., and Pokutta, S. (2012). An Algebraic Approach to Symmetric Extended Formulations. Proceedings of the International Symposium on Combinatorial Optimization, 7422, 141–152.DOI: 10.1007/978-3-642-32147-4_14[arXiv][BibTeX]
Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2012). Approximation Limits of Linear Programs (beyond Hierarchies). Proceedings of the IEEE Symposium on Foundations of Computer Science, 480–489.DOI: 10.1109/FOCS.2012.10[arXiv][BibTeX]
Braun, G., and Pokutta, S. (2011). Random Half-integral Polytopes. Operations Research Letters, 39(3), 204–207.DOI: 10.1016/j.orl.2011.03.003[URL][BibTeX]
Braun, G., and Pokutta, S. (2010). Rank of Random Half-integral Polytopes. Electronic Notes in Discrete Mathematics, 36, 415–422.DOI: 10.1016/j.endm.2010.05.053[URL][BibTeX]
Braun, G., and Pokutta, S. (2009). A Polyhedral Approach to Computing Border Bases.[arXiv][BibTeX]