Gábor Braun

postdoctoral researcher at ZIB since January 2020

📬 Contact

office Room 3037 at ZIB
Room MA 605 at TUB
e-mail braun (at) zib.de
homepage renyi.hu/~braung/
languages Hungarian, English, and German

🎓 Academic Background

Matura in Mathematics at Szent István Gimnázium
M.Sc. in Mathematics at Eötvös Loránd University
Ph.D. in Mathematics at DUE

🔬 Research

I approach problems from a strong algebraic viewpoint, searching for structure and operations and how they combine. My interests span from abstract algebra through topology/geometry to convex optimization.

Preprints

  1. Braun, G., Pokutta, S., and Weismantel, R. (2022). Alternating Linear Minimization: Revisiting von Neumann’s Alternating Projections. [arXiv] [slides] [video]
    [BibTeX]
    @misc{alternating_lmo_2022,
      archiveprefix = {arXiv},
      eprint = {2212.02933},
      primaryclass = {math.OC},
      year = {2022},
      author = {Braun, Gábor and Pokutta, Sebastian and Weismantel, Robert},
      title = {Alternating Linear Minimization: Revisiting von Neumann’s Alternating Projections},
      slides = {http://pokutta.com/slides/20230327-icerm.pdf},
      video = {https://icerm.brown.edu/programs/sp-s23/w2/#schedule-item-4945}
    }
  2. Braun, G., Carderera, A., Combettes, C., Hassani, H., Karbasi, A., Mokhtari, A., and Pokutta, S. (2022). Conditional Gradient Methods. [arXiv]
    [BibTeX]
    @misc{fw_survey_2022,
      archiveprefix = {arXiv},
      eprint = {2211.14103},
      primaryclass = {math.OC},
      year = {2022},
      author = {Braun, Gábor and Carderera, Alejandro and Combettes, Cyrille and Hassani, Hamed and Karbasi, Amin and Mokhtari, Aryan and Pokutta, Sebastian},
      title = {Conditional Gradient Methods}
    }
  3. Braun, G., and Pokutta, S. (2021). Dual Prices for Frank–Wolfe Algorithms. [arXiv]
    [BibTeX]
    @misc{dual_prices_FW_2021,
      archiveprefix = {arXiv},
      eprint = {2101.02087},
      primaryclass = {math.OC},
      year = {2021},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Dual Prices for Frank–Wolfe Algorithms}
    }
  4. Braun, G., and Pokutta, S. (2016). An Efficient High-probability Algorithm for Linear Bandits. [arXiv]
    [BibTeX]
    @misc{Braun2016bandit,
      archiveprefix = {arXiv},
      eprint = {1610.02072},
      primaryclass = {cs.DS},
      year = {2016},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {An Efficient High-probability Algorithm for Linear Bandits}
    }
  5. Braun, G., and Pokutta, S. (2015). An Information Diffusion Fano Inequality. [arXiv]
    [BibTeX]
    @misc{Braun2015Fano,
      archiveprefix = {arXiv},
      eprint = {1504.05492},
      primaryclass = {cs.IT},
      year = {2015},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {An Information Diffusion Fano Inequality}
    }

Conference proceedings

  1. Braun, G., Pokutta, S., Tu, D., and Wright, S. (2019). Blended Conditional Gradients: the Unconditioning of Conditional Gradients. Proceedings of International Conference on Machine Learning, 97, 735–743. [URL] [arXiv] [summary] [slides] [poster] [code]
    [BibTeX]
    @inproceedings{Braun2018blendedCG,
      year = {2019},
      booktitle = {Proceedings of International Conference on Machine Learning},
      volume = {97},
      pages = {735–743},
      url = {https://proceedings.mlr.press/v97/braun19a},
      archiveprefix = {arXiv},
      eprint = {1805.07311},
      primaryclass = {math.OC},
      author = {Braun, Gábor and Pokutta, Sebastian and Tu, Dan and Wright, Stephen},
      title = {Blended Conditional Gradients: the Unconditioning of Conditional Gradients},
      code = {https://github.com/pokutta/bcg},
      poster = {https://app.box.com/s/nmmm671jd72i397nysa8emfnzh1hn6hf},
      slides = {https://app.box.com/s/xbx3z7ws6dxvl3rzgj4jp6forigycooe},
      summary = {https://www.pokutta.com/blog/research/2019/02/18/bcg-abstract.html}
    }
  2. Braun, G., and Strüngmann, L. (2017). Rigid ℵ₁-free Abelian Groups with Prescribed Factors and their Role in the Theory of Cellular Covers. Proceedings of Groups, Modules, and Model Theory - Surveys and Recent Developments: In Memory of Rüdiger Göbel, 69–81. DOI: 10.1007/978-3-319-51718-6_4
    [BibTeX]
    @inproceedings{BG-prescribed-cellular_2017,
      year = {2017},
      booktitle = {Proceedings of Groups, Modules, and Model Theory - Surveys and Recent Developments: In Memory of Rüdiger Göbel},
      pages = {69–81},
      doi = {10.1007/978-3-319-51718-6_4},
      author = {Braun, Gábor and Strüngmann, Lutz},
      title = {Rigid ℵ₁-free Abelian Groups with Prescribed Factors and their Role in the Theory of Cellular Covers}
    }
  3. Braun, G., Pokutta, S., and Zink, D. (2017). Lazifying Conditional Gradient Algorithms. Proceedings of International Conference on Machine Learning, 70, 566–575. [URL] [arXiv] [slides] [poster]
    [BibTeX]
    @inproceedings{Braun2017lazyCG:1:,
      year = {2017},
      booktitle = {Proceedings of International Conference on Machine Learning},
      volume = {70},
      pages = {566–575},
      url = {https://proceedings.mlr.press/v70/braun17a},
      archiveprefix = {arXiv},
      eprint = {1610.05120},
      primaryclass = {cs.DS},
      author = {Braun, Gábor and Pokutta, Sebastian and Zink, Daniel},
      title = {Lazifying Conditional Gradient Algorithms},
      poster = {https://app.box.com/s/lysscdg17ytpz7mqr0tu2djffyqvkl6a},
      slides = {https://app.box.com/s/zsp0hixjz2ha23u1vuyosijjkjdh8k}
    }
  4. Braun, G., Pokutta, S., and Roy, A. (2016). Strong Reductions for Extended Formulations. Proceedings of Conference on Integer Programming and Combinatorial Optimization, 9682, 350–361. DOI: 10.1007/978-3-319-33461-5_29 [arXiv]
    [BibTeX]
    @inproceedings{BPR2015:1:,
      year = {2016},
      booktitle = {Proceedings of Conference on Integer Programming and Combinatorial Optimization},
      month = jun,
      volume = {9682},
      pages = {350–361},
      doi = {10.1007/978-3-319-33461-5_29},
      archiveprefix = {arXiv},
      eprint = {1512.04932},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian and Roy, Aurko},
      title = {Strong Reductions for Extended Formulations}
    }
  5. Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2016). The Matching Problem Has No Small Symmetric SDP. Proceedings of Symposium on Discrete Algorithms, 1067–1078. DOI: 10.1137/1.9781611974331.ch75 [arXiv]
    [BibTeX]
    @inproceedings{Braun2016matching-symmetricSDP:1:,
      year = {2016},
      booktitle = {Proceedings of Symposium on Discrete Algorithms},
      pages = {1067–1078},
      doi = {10.1137/1.9781611974331.ch75},
      archiveprefix = {arXiv},
      eprint = {1504.00703},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Brown-Cohen, Jonah and Huq, Arefin and Pokutta, Sebastian and Raghavendra, Prasad and Roy, Aurko and Weitz, Benjamin and Zink, Daniel},
      title = {The Matching Problem Has No Small Symmetric SDP}
    }
  6. Braun, G., Pokutta, S., and Zink, D. (2015). Inapproximability of Combinatorial Problems Via Small LPs and SDPs. Proceedings of Annual Symposium on Theory of Computing, 107–116. DOI: 10.1145/2746539.2746550 [arXiv] [video]
    [BibTeX]
    @inproceedings{Braun2015LP-SDP:1:,
      year = {2015},
      booktitle = {Proceedings of Annual Symposium on Theory of Computing},
      month = jun,
      pages = {107–116},
      doi = {10.1145/2746539.2746550},
      archiveprefix = {arXiv},
      eprint = {1410.8816},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian and Zink, Daniel},
      title = {Inapproximability of Combinatorial Problems Via Small LPs and SDPs},
      video = {https://youtu.be/MxLEticZ8RY}
    }
  7. Braun, G., and Pokutta, S. (2015). The Matching Polytope Does Not Admit Fully-polynomial Size Relaxation Schemes. Proceedings of Symposium on Discrete Algorithms, 837–846. DOI: 10.1137/1.9781611973730.57 [arXiv]
    [BibTeX]
    @inproceedings{Braun2014matching,
      year = {2015},
      booktitle = {Proceedings of Symposium on Discrete Algorithms},
      pages = {837-846},
      doi = {10.1137/1.9781611973730.57},
      archiveprefix = {arXiv},
      eprint = {1403.6710},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {The Matching Polytope Does Not Admit Fully-polynomial Size Relaxation Schemes}
    }
  8. Braun, G., Firorini, S., and Pokutta, S. (2014). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Proceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 28, 515–530. DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.515 [URL] [arXiv]
    [BibTeX]
    @inproceedings{Braun2013stable:1:,
      year = {2014},
      booktitle = {Proceedings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques},
      month = sep,
      volume = {28},
      pages = {515–530},
      doi = {10.4230/LIPIcs.APPROX-RANDOM.2014.515},
      url = {https://drops.dagstuhl.de/opus/volltexte/2014/4720},
      archiveprefix = {arXiv},
      eprint = {1311.4001},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Firorini, Samuel and Pokutta, Sebastian},
      title = {Average Case Polyhedral Complexity of the Maximum Stable Set Problem}
    }
  9. Braun, G., Pokutta, S., and Xie, Y. (2014). Info-greedy Sequential Adaptive Compressed Sensing. Proceedings of Allerton Conference on Communication, Control, and Computing (Allerton), 858–865. DOI: 10.1109/ALLERTON.2014.7028544 [arXiv]
    [BibTeX]
    @inproceedings{Braun2014info-greedy:1:,
      year = {2014},
      booktitle = {Proceedings of Allerton Conference on Communication, Control, and Computing (Allerton)},
      pages = {858–865},
      doi = {10.1109/ALLERTON.2014.7028544},
      archiveprefix = {arXiv},
      eprint = {1407.0731},
      primaryclass = {cs.IT},
      author = {Braun, Gábor and Pokutta, Sebastian and Xie, Yao},
      title = {Info-greedy Sequential Adaptive Compressed Sensing}
    }
  10. Braun, G., and Pokutta, S. (2013). Common Information and Unique Disjointness. Proceedings of Annual Symposium on Foundations of Computer Science, 688–697. [URL]
    [BibTeX]
    @inproceedings{Braun2013info-disjoint:1:,
      year = {2013},
      booktitle = {Proceedings of Annual Symposium on Foundations of Computer Science},
      pages = {688–697},
      url = {https://eccc.weizmann.ac.il/report/2013/056},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Common Information and Unique Disjointness}
    }
  11. Braun, G., and Pokutta, S. (2012). An Algebraic Approach to Symmetric Extended Formulations. Proceedings of International Symposium on Combinatorial Optimization), 7422, 141–152. DOI: 10.1007/978-3-642-32147-4_14 [arXiv]
    [BibTeX]
    @inproceedings{Braun2012symEF,
      year = {2012},
      booktitle = {Proceedings of International Symposium on Combinatorial Optimization)},
      month = apr,
      volume = {7422},
      pages = {141–152},
      doi = {10.1007/978-3-642-32147-4_14},
      archiveprefix = {arXiv},
      eprint = {1206.6318},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {An Algebraic Approach to Symmetric Extended Formulations}
    }
  12. Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2012). Approximation Limits of Linear Programs (beyond Hierarchies). Proceedings of Annual Symposium on Foundations of Computer Science, 480–489. DOI: 10.1109/FOCS.2012.10 [arXiv]
    [BibTeX]
    @inproceedings{Braun2012UDISJ:1:,
      year = {2012},
      booktitle = {Proceedings of Annual Symposium on Foundations of Computer Science},
      pages = {480–489},
      doi = {10.1109/FOCS.2012.10},
      archiveprefix = {arXiv},
      eprint = {1204.0957},
      primaryclass = {c.CC},
      author = {Braun, Gábor and Firorini, Samuel and Pokutta, Sebastian and Steurer, David},
      title = {Approximation Limits of Linear Programs (beyond Hierarchies)}
    }
  13. Braun, G., and Pokutta, S. (2010). Rank of Random Half-integral Polytopes. Proceedings of Electronic Notes in Discrete Mathematics, 36, 415–422. DOI: 10.1016/j.endm.2010.05.053 [URL]
    [BibTeX]
    @inproceedings{Braun2011half:1:,
      year = {2010},
      booktitle = {Proceedings of Electronic Notes in Discrete Mathematics},
      month = aug,
      volume = {36},
      pages = {415–422},
      doi = {10.1016/j.endm.2010.05.053},
      url = {https://www.optimization-online.org/DB_HTML/2010/11/2813.html},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Rank of Random Half-integral Polytopes}
    }

Full articles

  1. Braun, G., Pokutta, S., and Zink, D. (2019). Affine Reductions for LPs and SDPs. Mathematical Programming, 173, 281–312. DOI: 10.1007/s10107-017-1221-9 [arXiv]
    [BibTeX]
    @article{Braun2015LP-SDP,
      year = {2019},
      journal = {Mathematical Programming},
      volume = {173},
      pages = {281–312},
      doi = {10.1007/s10107-017-1221-9},
      archiveprefix = {arXiv},
      eprint = {1410.8816},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian and Zink, Daniel},
      title = {Affine Reductions for LPs and SDPs}
    }
  2. Braun, G., Pokutta, S., and Zink, D. (2019). Lazifying Conditional Gradient Algorithms. The Journal of Machine Learning Research, 20(71), 1–42. [URL] [arXiv]
    [BibTeX]
    @article{Braun2017lazyCG,
      year = {2019},
      journal = {The Journal of Machine Learning Research},
      volume = {20},
      number = {71},
      pages = {1–42},
      url = {http://jmlr.org/papers/v20/18-114.html},
      archiveprefix = {arXiv},
      eprint = {1610.05120},
      primaryclass = {cs.DS},
      author = {Braun, Gábor and Pokutta, Sebastian and Zink, Daniel},
      title = {Lazifying Conditional Gradient Algorithms}
    }
  3. Braun, G., Pokutta, S., and Roy, A. (2018). Strong Reductions for Extended Formulations. Mathematical Programming, 172, 591–620. DOI: 10.1007/s10107-018-1316-y [arXiv]
    [BibTeX]
    @article{BPR2015,
      year = {2018},
      journal = {Mathematical Programming},
      month = nov,
      volume = {172},
      pages = {591–620},
      doi = {10.1007/s10107-018-1316-y},
      archiveprefix = {arXiv},
      eprint = {1512.04932},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Pokutta, Sebastian and Roy, Aurko},
      title = {Strong Reductions for Extended Formulations}
    }
  4. Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2017). The Matching Problem Has No Small Symmetric SDP. Mathematical Programming, 165, 643–662. DOI: 10.1007/s10107-016-1098-z [arXiv]
    [BibTeX]
    @article{Braun2016matching-symmetricSDP,
      year = {2017},
      journal = {Mathematical Programming},
      month = oct,
      volume = {165},
      pages = {643–662},
      doi = {10.1007/s10107-016-1098-z},
      archiveprefix = {arXiv},
      eprint = {1504.00703},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Brown-Cohen, Jonah and Huq, Arefin and Pokutta, Sebastian and Raghavendra, Prasad and Roy, Aurko and Weitz, Benjamin and Zink, Daniel},
      title = {The Matching Problem Has No Small Symmetric SDP}
    }
  5. Braun, G., Guzmán, C., and Pokutta, S. (2017). Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization. IEEE Transactions on Information Theory, 63(7), 4709–4724. DOI: 10.1109/TIT.2017.2701343 [arXiv]
    [BibTeX]
    @article{Braun2013lowerCO,
      year = {2017},
      journal = {IEEE Transactions on Information Theory},
      month = jul,
      volume = {63},
      number = {7},
      pages = {4709-4724},
      doi = {10.1109/TIT.2017.2701343},
      archiveprefix = {arXiv},
      eprint = {1407.5144},
      primaryclass = {math.OC},
      author = {Braun, Gábor and Guzmán, Cristóbal and Pokutta, Sebastian},
      title = {Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization}
    }
  6. Braun, G., Jain, R., Lee, T., and Pokutta, S. (2017). Information-theoretic Approximations of the Nonnegative Rank. Computational Complexity, 26, 147–197. DOI: 10.1007/s00037-016-0125-z [URL]
    [BibTeX]
    @article{Braun2017info-nonnegative-rank,
      year = {2017},
      journal = {Computational Complexity},
      volume = {26},
      pages = {147–197},
      doi = {10.1007/s00037-016-0125-z},
      url = {https://eccc.weizmann.ac.il/report/2013/158},
      author = {Braun, Gábor and Jain, Rahul and Lee, Troy and Pokutta, Sebastian},
      title = {Information-theoretic Approximations of the Nonnegative Rank}
    }
  7. Braun, G., Firorini, S., and Pokutta, S. (2016). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Mathematical Programming, 160(1), 407–431. DOI: 10.1007/s10107-016-0989-3 [arXiv]
    [BibTeX]
    @article{Braun2013stable,
      year = {2016},
      journal = {Mathematical Programming},
      month = mar,
      volume = {160},
      number = {1},
      pages = {407–431},
      doi = {10.1007/s10107-016-0989-3},
      archiveprefix = {arXiv},
      eprint = {1311.4001},
      primaryclass = {cs.CC},
      author = {Braun, Gábor and Firorini, Samuel and Pokutta, Sebastian},
      title = {Average Case Polyhedral Complexity of the Maximum Stable Set Problem}
    }
  8. Braun, G., and Pokutta, S. (2016). Common Information and Unique Disjointness. Algorithmica, 76(3), 597–629. DOI: 10.1007/s00453-016-0132-0 [URL]
    [BibTeX]
    @article{Braun2013info-disjoint,
      year = {2016},
      journal = {Algorithmica},
      month = feb,
      volume = {76},
      number = {3},
      pages = {597–629},
      doi = {10.1007/s00453-016-0132-0},
      url = {https://eccc.weizmann.ac.il/report/2013/056},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Common Information and Unique Disjointness}
    }
  9. Braun, G., and Strüngmann, L. (2016). Examples of Non-dual Subgroups of the Baer–Specker Group. Houston Journal of Mathematics, 42(3), 723–739.
    [BibTeX]
    @article{BG-dual2014,
      year = {2016},
      journal = {Houston Journal of Mathematics},
      volume = {42},
      number = {3},
      pages = {723–739},
      author = {Braun, Gábor and Strüngmann, Lutz},
      title = {Examples of Non-dual Subgroups of the Baer–Specker Group}
    }
  10. Braun, G., and Pokutta, S. (2016). A Polyhedral Characterization of Border Bases. SIAM Journal on Discrete Mathematics, 30(1), 239–265. DOI: 10.1137/140977990 [arXiv]
    [BibTeX]
    @article{Braun2009borderbaseis,
      year = {2016},
      journal = {SIAM Journal on Discrete Mathematics},
      volume = {30},
      number = {1},
      pages = {239–265},
      doi = {10.1137/140977990},
      archiveprefix = {arXiv},
      eprint = {0912.1502},
      primaryclass = {math.AC},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {A Polyhedral Characterization of Border Bases}
    }
  11. Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2015). Approximation Limits of Linear Programs (beyond Hierarchies). Mathematics of Operations Research, 40(3), 756–772. DOI: 10.1287/moor.2014.0694 [arXiv]
    [BibTeX]
    @article{Braun2012UDISJ,
      year = {2015},
      journal = {Mathematics of Operations Research},
      month = aug,
      volume = {40},
      number = {3},
      pages = {756-772},
      doi = {10.1287/moor.2014.0694},
      archiveprefix = {arXiv},
      eprint = {1204.0957},
      primaryclass = {c.CC},
      author = {Braun, Gábor and Firorini, Samuel and Pokutta, Sebastian and Steurer, David},
      title = {Approximation Limits of Linear Programs (beyond Hierarchies)}
    }
  12. Braun, G., Pokutta, S., and Xie, Y. (2015). Info-greedy Sequential Adaptive Compressed Sensing. IEEE Journal of Selected Topics in Signal Processing, 9(4), 601–611. DOI: 10.1109/JSTSP.2015.2400428 [arXiv]
    [BibTeX]
    @article{Braun2014info-greedy,
      year = {2015},
      journal = {IEEE Journal of Selected Topics in Signal Processing},
      month = jun,
      volume = {9},
      number = {4},
      pages = {601–611},
      doi = {10.1109/JSTSP.2015.2400428},
      archiveprefix = {arXiv},
      eprint = {1407.0731},
      primaryclass = {cs.IT},
      author = {Braun, Gábor and Pokutta, Sebastian and Xie, Yao},
      title = {Info-greedy Sequential Adaptive Compressed Sensing}
    }
  13. Braun, G., and Strüngmann, L. (2015). The Independence of the Notions of Hopfian and Co-Hopfian Abelian P-groups. Proc. Amer. Math. Soc., 143, 3331–3341. DOI: 10.1090/proc/12413
    [BibTeX]
    @article{BG-Hopfian2015,
      year = {2015},
      journal = {Proc. Amer. Math. Soc.},
      month = apr,
      volume = {143},
      pages = {3331-3341},
      doi = {10.1090/proc/12413},
      author = {Braun, Gábor and Strüngmann, Lutz},
      title = {The Independence of the Notions of Hopfian and Co-Hopfian Abelian P-groups}
    }
  14. Braun, G., and Pokutta, S. (2014). A Short Proof for the Polyhedrality of the Chvátal-Gomory Closure of a Compact Convex Set. Operations Research Letters, 42(5), 307–310. DOI: 10.1016/j.orl.2014.05.004 [arXiv]
    [BibTeX]
    @article{Braun2012ChvatalGomory-compact,
      year = {2014},
      journal = {Operations Research Letters},
      month = jul,
      volume = {42},
      number = {5},
      pages = {307–310},
      doi = {10.1016/j.orl.2014.05.004},
      archiveprefix = {arXiv},
      eprint = {1207.4884},
      primaryclass = {(math.CO)},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {A Short Proof for the Polyhedrality of the Chvátal-Gomory Closure of a Compact Convex Set}
    }
  15. Braun, G., and Göbel, R. (2012). Splitting Kernels Into Small Summands. Israel Journal of Mathematics, 188, 221–230. DOI: 10.1007/s11856-011-0121-6
    [BibTeX]
    @article{2010GobelBraun_cotorsion,
      year = {2012},
      journal = {Israel Journal of Mathematics},
      month = mar,
      volume = {188},
      pages = {221–230},
      doi = {10.1007/s11856-011-0121-6},
      author = {Braun, Gábor and Göbel, Rüdiger},
      title = {Splitting Kernels Into Small Summands}
    }
  16. Braun, G., and Pokutta, S. (2012). Rigid Abelian Groups and the Probabilistic Method. Contemporary Mathematcs, 576, 17–30. DOI: 10.1090/conm/576 [arXiv]
    [BibTeX]
    @article{Braun2011rigid,
      year = {2012},
      journal = {Contemporary Mathematcs},
      volume = {576},
      pages = {17–30},
      doi = {10.1090/conm/576},
      archiveprefix = {arXiv},
      eprint = {1107.2325},
      primaryclass = {math.GR},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Rigid Abelian Groups and the Probabilistic Method}
    }
  17. Braun, G., and Trlifaj, J. (2011). Strong Submodules of Almost Projective Modules. Pacific Journal of Mathematics, 254(1), 73–87.
    [BibTeX]
    @article{BraunTrlifaj2011_projective,
      year = {2011},
      journal = {Pacific Journal of Mathematics},
      month = nov,
      volume = {254},
      number = {1},
      pages = {73–87},
      author = {Braun, Gábor and Trlifaj, Jan},
      title = {Strong Submodules of Almost Projective Modules}
    }
  18. Braun, G., and Pokutta, S. (2011). Random Half-integral Polytopes. Operations Research Letters, 39(3), 204–207. DOI: 10.1016/j.orl.2011.03.003 [URL]
    [BibTeX]
    @article{Braun2011half,
      year = {2011},
      journal = {Operations Research Letters},
      month = may,
      volume = {39},
      number = {3},
      pages = {204–207},
      doi = {10.1016/j.orl.2011.03.003},
      url = {https://www.optimization-online.org/DB_HTML/2010/11/2813.html},
      author = {Braun, Gábor and Pokutta, Sebastian},
      title = {Random Half-integral Polytopes}
    }
  19. Braun, G., and Strüngmann, L. (2011). Breaking Up Finite Automata Presentable Torsion-free Abelian Groups. Int. J. Algebra Comput., 21, 1463–1472. DOI: 10.1142/S0218196711006625
    [BibTeX]
    @article{2010LutzBraun_autogroup,
      year = {2011},
      journal = {Int. J. Algebra Comput.},
      volume = {21},
      pages = {1463–1472},
      doi = {10.1142/S0218196711006625},
      author = {Braun, Gábor and Strüngmann, Lutz},
      title = {Breaking Up Finite Automata Presentable Torsion-free Abelian Groups}
    }
  20. Braun, G., and Némethi, A. (2010). Surgery Formulas for Seiberg–Witten Invariants of Negative Definite Plumbed 3-manifolds. Journal Für Die Reine Und Angewandte Mathematik, 638, 189–208. DOI: 10.1515/CRELLE.2010.007 [arXiv]
    [BibTeX]
    @article{braun-nemeti07._SW,
      year = {2010},
      journal = {Journal für die reine und angewandte Mathematik},
      month = jan,
      number = {638},
      pages = {189–208},
      doi = {10.1515/CRELLE.2010.007},
      archiveprefix = {arXiv},
      eprint = {0704.3145},
      primaryclass = {math.AG},
      author = {Braun, Gábor and Némethi, András},
      title = {Surgery Formulas for Seiberg–Witten Invariants of Negative Definite Plumbed 3-manifolds}
    }
  21. Braun, G. (2008). The Cobordism Class of the Multiple Points of Immersions. Algebraic & Geometric Topology, 8, 581–601. DOI: 10.2140/agt.2008.8.581 [URL] [arXiv]
    [BibTeX]
    @article{braun04._cobor,
      year = {2008},
      journal = {Algebraic & Geometric Topology},
      month = may,
      number = {8},
      pages = {581–601},
      doi = {10.2140/agt.2008.8.581},
      url = {http://www.msp.warwick.ac.uk/agt/2008/08-01/p019.xhtml},
      archiveprefix = {arXiv},
      eprint = {0409574},
      primaryclass = {math.AT},
      author = {Braun, Gábor},
      title = {The Cobordism Class of the Multiple Points of Immersions}
    }
  22. Braun, G., and Némethi, A. (2007). Invariants of Newton Non-degenerate Surface Singularities. Compositio Mathematica, 143, 1003–1036. [URL] [arXiv]
    [BibTeX]
    @article{braun-nemeti05._newton,
      year = {2007},
      journal = {Compositio Mathematica},
      number = {143},
      pages = {1003–1036},
      url = {http://journals.cambridge.org/action/displayAbstract?aid=1207944},
      archiveprefix = {arXiv},
      eprint = {0609093},
      primaryclass = {math.AG},
      author = {Braun, Gábor and Némethi, András},
      title = {Invariants of Newton Non-degenerate Surface Singularities}
    }
  23. Braun, G., and Lippner, G. (2006). Characteristic Numbers of Multiple-point Manifolds. Bull. London Math. Soc., 38, 667–678. DOI: 10.1112/S0024609306018571
    [BibTeX]
    @article{braun-lippner05.multiple_point,
      year = {2006},
      journal = {Bull. London Math. Soc.},
      month = aug,
      number = {38},
      pages = {667–678},
      doi = {10.1112/S0024609306018571},
      author = {Braun, Gábor and Lippner, Gábor},
      title = {Characteristic Numbers of Multiple-point Manifolds}
    }
  24. Braun, G., and Göbel, R. (2005). E-algebras Whose Torsion Part Is Not Cyclic. Proc. Amer. Math. Soc., 133(8), 2251–2258 (electronic). [URL]
    [BibTeX]
    @article{MR2138867,
      year = {2005},
      journal = {Proc. Amer. Math. Soc.},
      volume = {133},
      number = {8},
      pages = {2251–2258 (electronic)},
      url = {http://www.ams.org/proc/2005-133-08/S0002-9939-05-07815-9/home.html},
      author = {Braun, Gábor and Göbel, Rüdiger},
      title = {E-algebras Whose Torsion Part Is Not Cyclic}
    }
  25. Blass, A., and Braun, G. (2005). Random Orders and Gambler’s Ruin. Electronic Journal of Combinatorics, 12(1), R23. [URL]
    [BibTeX]
    @article{blass05._random_order_ruin,
      year = {2005},
      journal = {Electronic Journal of Combinatorics},
      volume = {12},
      number = {1},
      pages = {R23},
      url = {http://www.combinatorics.org/Volume_12/Abstracts/v12i1r23.html},
      author = {Blass, Andreas and Braun, Gábor},
      title = {Random Orders and Gambler’s Ruin}
    }
  26. Braun, G. (2005). Characterization of Matrix Types of Ultramatricial Algebras. New York J. Math., 11, 21–33. [URL]
    [BibTeX]
    @article{braun05._ultramatrix,
      year = {2005},
      journal = {New York J. Math.},
      volume = {11},
      pages = {21–33},
      url = {http://nyjm.albany.edu:8000/j/2005/11-2.html},
      author = {Braun, Gábor},
      title = {Characterization of Matrix Types of Ultramatricial Algebras}
    }
  27. Braun, G. (2004). A Proof of Higgins’s Conjecture. Bull. Austral. Math. Soc., 70(2), 207–212. [arXiv]
    [BibTeX]
    @article{MR2094288,
      year = {2004},
      journal = {Bull. Austral. Math. Soc.},
      volume = {70},
      number = {2},
      pages = {207–212},
      archiveprefix = {arXiv},
      eprint = {0312139},
      primaryclass = {math.GR},
      author = {Braun, Gábor},
      title = {A Proof of Higgins’s Conjecture}
    }
  28. Braun, G., and Göbel, R. (2003). Outer Automorphisms of Locally Finite P-groups. J. Algebra, 264(1), 55–67.
    [BibTeX]
    @article{MR1980685,
      year = {2003},
      journal = {J. Algebra},
      volume = {264},
      number = {1},
      pages = {55–67},
      author = {Braun, Gábor and Göbel, Rüdiger},
      title = {Outer Automorphisms of Locally Finite P-groups}
    }
  29. Braun, G., and Göbel, R. (2003). Automorphism Groups of Nilpotent Groups. Arch. Math. (Basel), 80(5), 464–474. DOI: 10.1007/s00013-003-0802-4
    [BibTeX]
    @article{MR1995625,
      year = {2003},
      journal = {Arch. Math. (Basel)},
      volume = {80},
      number = {5},
      pages = {464–474},
      doi = {10.1007/s00013-003-0802-4},
      author = {Braun, Gábor and Göbel, Rüdiger},
      title = {Automorphism Groups of Nilpotent Groups}
    }