Suresh Bolusani

researcher at ZIB since October 2021

📬 Contact

office Room 3103 at ZIB
e-mail bolusani (at) zib.de
bsuresh (at) lehigh.edu
languages Telugu, English, and Hindi

🎓 Academic Background

Jun 2014 M.Tech. in Industrial Engineering and Operations Research at IITB
Jun 2009 B.Tech. in Production and Industrial Engineering at IITR

🔬 Research

Preprints

  1. Mexi, G., Besançon, M., Bolusani, S., Chmiela, A., Hoen, A., and Gleixner, A. (2023). Scylla: a Matrix-free Fix-propagate-and-project Heuristic for Mixed-integer Optimization. [arXiv]
    [BibTeX]
    @misc{scyllaheuristic,
      archiveprefix = {arXiv},
      eprint = {2307.03466},
      primaryclass = {math.OC},
      year = {2023},
      author = {Mexi, Gioni and Besançon, Mathieu and Bolusani, Suresh and Chmiela, Antonia and Hoen, Alexander and Gleixner, Ambros},
      title = {Scylla: a Matrix-free Fix-propagate-and-project Heuristic for Mixed-integer Optimization}
    }
  2. Bolusani, S., Coniglio, S., Ralphs, T. K., and Tahernejad, S. (2021). A Unified Framework for Multistage Mixed Integer Linear Optimization. [arXiv]
    [BibTeX]
    @misc{BolConRalTah20,
      archiveprefix = {arXiv},
      eprint = {2104.09003},
      primaryclass = {math.OC},
      year = {2021},
      author = {Bolusani, Suresh and Coniglio, Stefano and Ralphs, Ted K. and Tahernejad, Sahar},
      title = {A Unified Framework for Multistage Mixed Integer Linear Optimization}
    }

Full articles

  1. Bolusani, S., and Ralphs, T. K. (2022). A Framework for Generalized Benders’ Decomposition and Its Applications to Multilevel Optimization. Mathematical Programming, 196, 389–426. DOI: 10.1007/s10107-021-01763-7 [arXiv]
    [BibTeX]
    @article{BolRal22,
      year = {2022},
      journal = {Mathematical Programming},
      volume = {196},
      pages = {389-426},
      doi = {10.1007/s10107-021-01763-7},
      archiveprefix = {arXiv},
      eprint = {2104.06496},
      primaryclass = {math.OC},
      author = {Bolusani, Suresh and Ralphs, Ted K.},
      title = {A Framework for Generalized Benders' Decomposition and Its Applications to Multilevel Optimization}
    }