Steven-Marian Stengl

📬 Contact

office
Room 1356 at ZIB
e-mail

🎓 Curriculum vitae

since 2022
Researcher at TUB
Jan 2023
Ph.D. in Mathematics at HUB
Jun 2017
M.Sc. in Mathematics at HUB

đź“ť Publications and preprints

Preprints

  1. Stengl, S.-M. (2021). Path-following Methods for Generalized Nash Equilibrium Problems. [arXiv]
    [BibTeX]
    @misc{2021_Stengl_Pathfollowingnash,
      archiveprefix = {arXiv},
      eprint = {2110.10627},
      primaryclass = {math.OC},
      year = {2021},
      author = {Stengl, Steven-Marian},
      title = {Path-following Methods for Generalized Nash Equilibrium Problems}
    }
  2. Stengl, S.-M. (2021). Combined Regularization and Discretization of Equilibrium Problems and Primal-dual Gap Estimators. [arXiv]
    [BibTeX]
    @misc{2021_Stengl_Regularizationdiscretization,
      archiveprefix = {arXiv},
      eprint = {2110.02817},
      primaryclass = {math.NA},
      year = {2021},
      author = {Stengl, Steven-Marian},
      title = {Combined Regularization and Discretization of Equilibrium Problems and Primal-dual Gap Estimators}
    }
  3. HintermĂĽller, M., and Stengl, S.-M. On the Convexity of Optimal Control Problems Involving Non-linear PDEs or VIs and Applications to Nash Games. [URL]
    [BibTeX]
    @misc{2020_MichaelStengl_Convexitynashgames,
      url = {https://wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2020&number=2759},
      author = {HintermĂĽller, Michael and Stengl, Steven-Marian},
      title = {On the Convexity of Optimal Control Problems Involving Non-linear PDEs or VIs and Applications to Nash Games}
    }

Full articles

  1. Hintermüller, M., and Stengl, S.-M. (2024). A Generalized 𝛤-Convergence Concept for a Class of Equilibrium Problems. Journal of Nonlinear Science, 34. DOI: 10.1007/s00332-024-10059-x [URL]
    [BibTeX]
    @article{2021_MichaelStengl_Generalizedgammaconvergence,
      year = {2024},
      journal = {Journal of Nonlinear Science},
      volume = {34},
      doi = {10.1007/s00332-024-10059-x},
      url = {https://link.springer.com/article/10.1007/s00332-024-10059-x},
      author = {HintermĂĽller, Michael and Stengl, Steven-Marian},
      title = {A Generalized 𝛤-Convergence Concept for a Class of Equilibrium Problems}
    }
  2. Stengl, S.-M., Gelß, P., Klus, S., and Pokutta, S. (2024). Existence and Uniqueness of Solutions of the Koopman–von Neumann Equation on Bounded Domains. Journal of Physics A: Mathematical and Theoretical. DOI: 10.1088/1751-8121/ad6f7d [URL] [arXiv]
    [BibTeX]
    @article{2023_StenglGelssKlusPokutta_Koopmanvonneumann,
      year = {2024},
      journal = {Journal of Physics A: Mathematical and Theoretical},
      doi = {10.1088/1751-8121/ad6f7d},
      url = {https://iopscience.iop.org/article/10.1088/1751-8121/ad6f7d},
      archiveprefix = {arXiv},
      eprint = {2306.13504},
      primaryclass = {math.AP},
      author = {Stengl, Steven-Marian and GelĂź, Patrick and Klus, Stefan and Pokutta, Sebastian},
      title = {Existence and Uniqueness of Solutions of the Koopman--von Neumann Equation on Bounded Domains}
    }
  3. Stengl, S.-M. (2024). An Alternative Formulation of the Quantum Phase Estimation Using Projection-based Tensor Decompositions. Quantum Information Processing, 23. DOI: 10.1007/s11128-024-04347-4 [URL] [arXiv]
    [BibTeX]
    @article{2023_Stengl_Quantumphaseestimation,
      year = {2024},
      journal = {Quantum Information Processing},
      volume = {23},
      doi = {10.1007/s11128-024-04347-4},
      url = {https://link.springer.com/article/10.1007/s11128-024-04347-4},
      archiveprefix = {arXiv},
      eprint = {2303.05894},
      primaryclass = {quant-ph},
      author = {Stengl, Steven-Marian},
      title = {An Alternative Formulation of the Quantum Phase Estimation Using Projection-based Tensor Decompositions}
    }
  4. Gahururu, D., Hintermüller, M., Stengl, S.-M., and Surowiec, T. M. (2022). Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion. In Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization (Vol. 172, pp. 145–181). DOI: 10.1007/978-3-030-79393-7_7
    [BibTeX]
    @incollection{2022_GahururuHintermllerStenglSurowiec_GnepPdesRiskaversion,
      year = {2022},
      booktitle = {Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization},
      volume = {172},
      pages = {145–181},
      doi = {10.1007/978-3-030-79393-7_7},
      author = {Gahururu, Deborah and HintermĂĽller, Michael and Stengl, Steven-Marian and Surowiec, Thomas M.},
      title = {Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion}
    }
  5. Hintermüller, M., Stengl, S.-M., and Surowiec, T. (2021). Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy. Journal of Mathematical Imaging and Vision, 63(9), 1095–1117. DOI: 10.1007/s10851-021-01034-2 [URL]
    [BibTeX]
    @article{2021_MichaelStenglThomas_Uncertaintysegmentation,
      year = {2021},
      journal = {Journal of Mathematical Imaging and Vision},
      volume = {63},
      number = {9},
      pages = {1095--1117},
      doi = {10.1007/s10851-021-01034-2},
      url = {https://link.springer.com/article/10.1007/s10851-021-01034-2},
      author = {HintermĂĽller, Michael and Stengl, Steven-Marian and Surowiec, Thomas},
      title = {Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy}
    }