Steven-Marian Stengl
researcher at TUB since June 2022📬 Contact
office | Room 1356 at ZIB |
---|---|
stengl (at) math.tu-berlin.de |
🎓 Academic Background
Jun 2017 | M.Sc. in Mathematics at HUB |
---|
🔬 Research
Preprints
- Stengl, S.-M., Gelß, P., Klus, S., and Pokutta, S. (2023). Existence and Uniqueness of Solutions of the Koopman–von Neumann Equation on Bounded Domains.
[arXiv]
[BibTeX]
@misc{KoopmanNeumann2023, archiveprefix = {arXiv}, eprint = {2306.13504}, primaryclass = {math.AP}, year = {2023}, author = {Stengl, Steven-Marian and GelĂź, Patrick and Klus, Stefan and Pokutta, Sebastian}, title = {Existence and Uniqueness of Solutions of the Koopman--von Neumann Equation on Bounded Domains} }
- Stengl, S.-M. (2023). An Alternative Formulation of the Quantum Phase Estimation Using Projection-based Tensor Decompositions.
[arXiv]
[BibTeX]
@misc{stengl_qpe_23, archiveprefix = {arXiv}, eprint = {2303.05894}, primaryclass = {quant-ph}, year = {2023}, author = {Stengl, Steven-Marian}, title = {An Alternative Formulation of the Quantum Phase Estimation Using Projection-based Tensor Decompositions} }
- Hintermüller, M., and Stengl, S.-M. A Generalized 𝛤-convergence Concept for a Type of Equilibrium Problems.
[URL]
[BibTeX]
@misc{HintStengl_GammaConvergenceEquilibrium, url = {https://wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2021&number=2879}, author = {Hintermüller, Michael and Stengl, Steven-Marian}, title = {A Generalized 𝛤-convergence Concept for a Type of Equilibrium Problems} }
- HintermĂĽller, M., and Stengl, S.-M. On the Convexity of Optimal Control Problems Involving Non-linear PDEs or VIs and Applications to Nash Games.
[URL]
[BibTeX]
@misc{HintStengl_VectorValuedConvexity, url = {https://wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2020&number=2759}, author = {HintermĂĽller, Michael and Stengl, Steven-Marian}, title = {On the Convexity of Optimal Control Problems Involving Non-linear PDEs or VIs and Applications to Nash Games} }
- Stengl, S.-M. Combined Regularization and Discretization of Equilibrium Problems and Primal-dual Gap Estimators.
[arXiv]
[BibTeX]
@misc{Stengl_AFEMQVI, archiveprefix = {arXiv}, eprint = {2110.02817}, primaryclass = {math.NA}, author = {Stengl, Steven-Marian}, title = {Combined Regularization and Discretization of Equilibrium Problems and Primal-dual Gap Estimators} }
- Stengl, S.-M. Path-following Methods for Generalized Nash Equilibrium Problems.
[arXiv]
[BibTeX]
@misc{Stengl_PathFollowingGNEP, archiveprefix = {arXiv}, eprint = {2110.10627}, primaryclass = {math.OC}, author = {Stengl, Steven-Marian}, title = {Path-following Methods for Generalized Nash Equilibrium Problems} }
Full articles
- Gahururu, D., Hintermüller, M., Stengl, S.-M., and Surowiec, T. M. (2022). Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion. In Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization (Vol. 172, pp. 145–181).
DOI: 10.1007/978-3-030-79393-7_7
[BibTeX]
@incollection{Stengl2022Nash-PDE, year = {2022}, booktitle = {Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization}, volume = {172}, pages = {145–181}, doi = {10.1007/978-3-030-79393-7_7}, author = {Gahururu, Deborah and Hintermüller, Michael and Stengl, Steven-Marian and Surowiec, Thomas M.}, title = {Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion} }
- Hintermüller, M., Stengl, S.-M., and Surowiec, T. (2021). Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy. Journal of Mathematical Imaging and Vision, 63(9), 1095–1117.
DOI: 10.1007/s10851-021-01034-2
[URL]
[BibTeX]
@article{HintStenglSurowiec_UQMumford_Shah, year = {2021}, journal = {Journal of Mathematical Imaging and Vision}, volume = {63}, number = {9}, pages = {1095--1117}, doi = {10.1007/s10851-021-01034-2}, url = {https://link.springer.com/article/10.1007/s10851-021-01034-2}, author = {Hintermüller, Michael and Stengl, Steven-Marian and Surowiec, Thomas}, title = {Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy} }