Sébastien Designolle

📬 Contact

office Room 1357 at ZIB
e-mail designolle (at) zib.de
homepage sebastiendesignolle.github....
languages French, English, and German

🎓 Curriculum vitae

since Dec 2022 postdoctoral researcher at ZIB
Oct 2021 Ph.D. in Quantum Nonlocality at Uni Geneva
Jul 2017 M.Sc. in Quantum Physics at ENS
Aug 2016 M.Sc. in Physics at Polytechnique

📝 Publications and preprints

Full articles

  1. Designolle, S., Vértesi, T., and Pokutta, S. (2024). Symmetric Multipartite Bell Inequalities Via Frank-Wolfe Algorithms. Physics Review A. [arXiv]
    [BibTeX]
    @article{symmetricBell2023,
      year = {2024},
      journal = {Physics Review A},
      archiveprefix = {arXiv},
      eprint = {2310.20677},
      primaryclass = {quant-ph},
      author = {Designolle, Sébastien and Vértesi, Tamás and Pokutta, Sebastian},
      title = {Symmetric Multipartite Bell Inequalities Via Frank-Wolfe Algorithms}
    }
  2. Designolle, S., Iommazzo, G., Besançon, M., Knebel, S., Gelß, P., and Pokutta, S. (2023). Improved Local Models and New Bell Inequalities Via Frank-Wolfe Algorithms. Physical Review Research, 5(4). DOI: 10.1103/PhysRevResearch.5.043059 [arXiv] [slides] [code]
    [BibTeX]
    @article{dibkgp_bell_23,
      year = {2023},
      journal = {Physical Review Research},
      month = oct,
      volume = {5},
      number = {4},
      doi = {10.1103/PhysRevResearch.5.043059},
      archiveprefix = {arXiv},
      eprint = {2302.04721},
      primaryclass = {quant-ph},
      author = {Designolle, Sébastien and Iommazzo, Gabriele and Besançon, Mathieu and Knebel, Sebastian and Gelß, Patrick and Pokutta, Sebastian},
      title = {Improved Local Models and New Bell Inequalities Via Frank-Wolfe Algorithms},
      code = {https://github.com/ZIB-IOL/BellPolytopes.jl},
      slides = {https://www.pokutta.com/slides/20230808-tokyo-bell.pdf}
    }

🔬 Projects

Entanglement Detection Via Frank-Wolfe Algorithms

We will apply a Frank-Wolfe-based approach for separability certification and entanglement detection of multipartite quantum states. The method will be further exploited to derive entanglement witnesses in the case, often encountered in experiments, of incomplete characterisation of the quantum state.

MATH+ AA2-19
Jan 2024 to Dec 2025
3