Gabriele Iommazzo
My academic interests primarily lie in the optimization of machine learning paradigms in mathematical programs. Recently, my focus has shifted towards convex optimization, particularly conditional gradient algorithms. This research explores their applications in diverse contexts, such as quantum nonlocality and optimization over intersecting sets.
📬 Contact
- office
- Room 3106 at ZIB
- iommazzo (at) zib.de
- homepage
- giommazz.github.io/
- languages
- Italian, English, and French
🎓 Curriculum vitae
- 2022 to 2024
- Researcher at ZIB
- 2021 to 2021
- Research Fellow at University of Pisa
- 2017 to 2017
- Research Intern at École polytechnique
- Dec 2021
- Ph.D. in Computer Science at and
- Oct 2017
- M.Sc. in Data Science and Business Informatics at University of Pisa
đź“ť Publications and preprints
Conference proceedings
- Iommazzo, G., D’Ambrosio, C., Frangioni, A., and Liberti, L. (2020). Learning to Configure Mathematical Programming Solvers by Mathematical Programming. Proceedings of the Learning and Intelligent Optimization Conference.
DOI: 10.1007/978-3-030-53552-0_34
[arXiv]
[BibTeX]
- Liberti, L., Iommazzo, G., Lavor, C., and Maculan, N. (2020). A Cycle-based Formulation for Distance Geometry Problem. Proceedings of the 18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization.
DOI: 10.1007/978-3-030-63072-0_8
[BibTeX]
- Iommazzo, G., D’Ambrosio, C., Frangioni, A., and Liberti, L. (2020). A Learning-based Mathematical Programming Formulation for the Automatic Configuration of Optimization Solvers. Proceedings of the International Conference on Machine Learning, Optimization and Data Science.
DOI: 10.1007/978-3-030-64583-0_61
[arXiv]
[BibTeX]
Full articles
- Designolle, S., Iommazzo, G., Besançon, M., Knebel, S., Gelß, P., and Pokutta, S. (2023). Improved Local Models and New Bell Inequalities Via Frank-Wolfe Algorithms. Physical Review Research, 5(4).
DOI: 10.1103/PhysRevResearch.5.043059
[arXiv]
[slides]
[code]
[BibTeX]
- Liberti, L., Iommazzo, G., Lavor, C., and Maculan, N. (2023). Cycle-based Formulations in Distance Geometry. Open Journal of Mathematical Optimization, 4(1).
DOI: 10.5802/ojmo.18
[arXiv]
[BibTeX]
- Iommazzo, G., D’Ambrosio, C., Frangioni, A., and Liberti, L. (2022). Algorithm Configuration Problem. In Encyclopedia of Optimization (pp. 1–8).
DOI: 10.1007/978-3-030-54621-2_749-1
[arXiv]
[BibTeX]