List of Publications
This page lists both peer-reviewed publications and preprints by IOL Lab members. Also check out our Google Scholar profile for up-to-date statistics on citations.
Preprints
- Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz, T., van Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I., Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., … Xu, L. (2024). The SCIP Optimization Suite 9.0 (ZIB Report No. 24-02-29). Zuse Institute Berlin.
[URL]
[arXiv]
[code]
[BibTeX]
- Designolle, S., Vértesi, T., and Pokutta, S. (2024). Better Bounds on Grothendieck Constants of Finite Orders.
[arXiv]
[BibTeX]
- Göß, A., Martin, A., Pokutta, S., and Sharma, K. (2024). Norm-induced Cuts: Optimization with Lipschitzian Black-box Functions.
[URL]
[arXiv]
[BibTeX]
- Díaz, A. E., Gupta, P., Cecchelli, D. M., Parczyk, O., and Sgueglia, A. (2024). Dirac’s Theorem for Graphs of Bounded Bandwidth.
[arXiv]
[BibTeX]
- Bolusani, S., Mexi, G., Besançon, M., and Turner, M. (2024). A Multi-Reference Relaxation Enforced Neighborhood Search Heuristic in SCIP.
[arXiv]
[BibTeX]
- Borst, S., Eifler, L., and Gleixner, A. (2024). Certified Constraint Propagation and Dual Proof Analysis in a Numerically Exact MIP Solver.
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Woodstock, Z. (2024). Flexible Block-iterative Analysis for the Frank-Wolfe Algorithm.
[arXiv]
[BibTeX]
- Illingworth, F., Lang, R., Müyesser, A., Parczyk, O., and Sgueglia, A. (2024). Spanning Spheres in Dirac Hypergraphs.
[arXiv]
[BibTeX]
- Goerigk, M., Hartisch, M., Merten, S., and Sharma, K. (2024). Feature-Based Interpretable Optimization.
[arXiv]
[BibTeX]
- Głuch, G., Turan, B., Nagarajan, S. G., and Pokutta, S. (2024). The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses.
[arXiv]
[BibTeX]
- Halbig, K., Hoen, A., Gleixner, A., Witzig, J., and Weninger, D. (2024). A Diving Heuristic for Mixed-integer Problems with Unbounded Semi-continuous Variables.
[arXiv]
[BibTeX]
- Hoen, A., Kamp, D., and Gleixner, A. (2024). MIP-DD: A Delta Debugger for Mixed Integer Programming Solvers.
[arXiv]
[BibTeX]
- Kiem, A., Parczyk, O., and Spiegel, C. (2024). Forcing Graphs to Be Forcing.
[arXiv]
[BibTeX]
- Liu, Y.-C., and Shang, J. (2024). Beating the Optimal Verification of Entangled States Via Collective Strategies.
[arXiv]
[BibTeX]
- Mexi, G., Serrano, F., Berthold, T., Gleixner, A., and Nordström, J. (2024). Cut-based Conflict Analysis in Mixed Integer Programming.
[arXiv]
[BibTeX]
- Mundinger, K., Zimmer, M., and Pokutta, S. (2024). Neural Parameter Regression for Explicit Representations of PDE Solution Operators.
[arXiv]
[BibTeX]
- Parczyk, O., and Spiegel, C. (2024). An Unsure Note on an Un-Schur Problem.
[arXiv]
[BibTeX]
- Haase, J., and Pokutta, S. (2024). Human-AI Co-Creativity: Exploring Synergies Across Levels of Creative Collaboration.
[arXiv]
[BibTeX]
- Roux, C., Zimmer, M., and Pokutta, S. (2024). On the Byzantine-resilience of Distillation-based Federated Learning.
[arXiv]
[BibTeX]
- Sadiku, S., Wagner, M., Nagarajan, S. G., and Pokutta, S. (2024). S-CFE: Simple Counterfactual Explanations.
[arXiv]
[BibTeX]
- Wirth, E., Besançon, M., and Pokutta, S. (2024). The Pivoting Framework: Frank-Wolfe Algorithms with Active Set Size Control.
[arXiv]
[BibTeX]
- Wirth, E., Pena, J., and Pokutta, S. (2024). Fast Convergence of Frank-Wolfe Algorithms on Polytopes.
[arXiv]
[BibTeX]
- Xu, L., and D’Ambrosio, C. (2024). Formulations of the Continuous Set-covering Problem on Networks: a Comparative Study.
[arXiv]
[BibTeX]
- Xu, L., and Liberti, L. (2024). Relaxations for Binary Polynomial Optimization Via Signed Certificates.
[arXiv]
[BibTeX]
- Prause, F. (2023). A Multi-Swap Heuristic for Rolling Stock Rotation Planning with Predictive Maintenance (ZIB Report No. 23-29). Zuse Institute Berlin.
[URL]
[BibTeX]
- Prause, F., and Borndörfer, R. (2023). Construction of a Test Library for the Rolling Stock Rotation Problem with Predictive Maintenance (ZIB Report No. 23-20). Zuse Institute Berlin.
[URL]
[BibTeX]
- Kerdreux, T., Scieur, D., d’Aspremont, A., and Pokutta, S. (2023). Strong Convexity of Feasible Sets in Riemannian Manifolds.
[arXiv]
[BibTeX]
- Böttcher, J., Frankl, N., Cecchelli, D. M., Skokan, J., and Parczyk, O. (2023). Graphs with Large Minimum Degree and No Small Odd Cycles Are 3-colourable.
[arXiv]
[BibTeX]
- Gelß, P., Klein, R., Matera, S., and Schmidt, B. (2023). Quantum Dynamics of Coupled Excitons and Phonons in Chain-like Systems: Tensor Train Approaches and Higher-order Propagators.
[arXiv]
[BibTeX]
- Klus, S., and Gelß, P. (2023). Continuous Optimization Methods for the Graph Isomorphism Problem.
[arXiv]
[BibTeX]
- Martínez-Rubio, D., Roux, C., Criscitiello, C., and Pokutta, S. (2023). Accelerated Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties.
[arXiv]
[BibTeX]
- Mattos, L., Cecchelli, D. M., and Parczyk, O. (2023). On Product Schur Triples in the Integers.
[arXiv]
[BibTeX]
- Sadiku, S., Wagner, M., and Pokutta, S. (2023). Group-wise Sparse and Explainable Adversarial Attacks.
[arXiv]
[BibTeX]
- Scieur, D., Kerdreux, T., Martínez-Rubio, D., d’Aspremont, A., and Pokutta, S. (2023). Strong Convexity of Sets in Riemannian Manifolds.
[arXiv]
[BibTeX]
- Turner, M., Berthold, T., Besançon, M., and Koch, T. (2023). Branching Via Cutting Plane Selection: Improving Hybrid Branching.
[arXiv]
[BibTeX]
- Turner, M., Chmiela, A., Koch, T., and Winkler, M. (2023). PySCIPOpt-ML: Embedding Trained Machine Learning Models Into Mixed-integer Programs.
[arXiv]
[BibTeX]
- Wirth, E., Pena, J., and Pokutta, S. (2023). Accelerated Affine-invariant Convergence Rates of the Frank-Wolfe Algorithm with Open-loop Step-sizes.
[arXiv]
[BibTeX]
- Woodstock, Z., and Pokutta, S. (2023). Splitting the Conditional Gradient Algorithm.
[arXiv]
[BibTeX]
- Zimmer, M., Andoni, M., Spiegel, C., and Pokutta, S. (2023). PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs.
[arXiv]
[code]
[BibTeX]
- van Doornmalen, J., Eifler, L., Gleixner, A., and Hojny, C. (2023). A Proof System for Certifying Symmetry and Optimality Reasoning in Integer Programming.
[arXiv]
[BibTeX]
- Braun, G., Carderera, A., Combettes, C., Hassani, H., Karbasi, A., Mokhtari, A., and Pokutta, S. (2022). Conditional Gradient Methods.
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Weismantel, R. (2022). Alternating Linear Minimization: Revisiting von Neumann’s Alternating Projections.
[arXiv]
[slides]
[video]
[BibTeX]
- Gelß, P., Klus, S., Knebel, S., Shakibaei, Z., and Pokutta, S. (2022). Low-rank Tensor Decompositions of Quantum Circuits.
[arXiv]
[BibTeX]
- Hendrych, D., Troppens, H., Besançon, M., and Pokutta, S. (2022). Convex Integer Optimization with Frank-Wolfe Methods.
[arXiv]
[slides]
[code]
[BibTeX]
- Zimmer, M., Spiegel, C., and Pokutta, S. (2022). Compression-aware Training of Neural Networks Using Frank-Wolfe.
[arXiv]
[BibTeX]
- Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S. J., … Witzig, J. (2021). The SCIP Optimization Suite 8.0 (ZIB Report No. 21-41). Zuse Institute Berlin.
[URL]
[arXiv]
[code]
[BibTeX]
- Bolusani, S., Coniglio, S., Ralphs, T. K., and Tahernejad, S. (2021). A Unified Framework for Multistage Mixed Integer Linear Optimization.
[arXiv]
[BibTeX]
- Braun, G., and Pokutta, S. (2021). Dual Prices for Frank–Wolfe Algorithms.
[arXiv]
[BibTeX]
- Carderera, A., Pokutta, S., Schütte, C., and Weiser, M. (2021). CINDy: Conditional Gradient-based Identification of Non-linear Dynamics – Noise-robust Recovery.
[arXiv]
[BibTeX]
- Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021). Local and Global Uniform Convexity Conditions.
[arXiv]
[BibTeX]
- Roux, C., Wirth, E., Pokutta, S., and Kerdreux, T. (2021). Efficient Online-bandit Strategies for Minimax Learning Problems.
[arXiv]
[BibTeX]
- Carderera, A., and Pokutta, S. (2020). Second-order Conditional Gradient Sliding.
[arXiv]
[code]
[BibTeX]
- Combettes, C., Spiegel, C., and Pokutta, S. (2020). Projection-free Adaptive Gradients for Large-scale Optimization.
[arXiv]
[summary]
[code]
[BibTeX]
- Pokutta, S., Spiegel, C., and Zimmer, M. (2020). Deep Neural Network Training with Frank-Wolfe.
[arXiv]
[summary]
[code]
[BibTeX]
- Braun, G., and Pokutta, S. (2016). An Efficient High-probability Algorithm for Linear Bandits.
[arXiv]
[BibTeX]
- Braun, G., and Pokutta, S. (2009). A Polyhedral Approach to Computing Border Bases.
[arXiv]
[BibTeX]
Conference Proceedings
- Wäldchen, S., Sharma, K., Turan, B., Zimmer, M., and Pokutta, S. (2024). Interpretability Guarantees with Merlin-Arthur Classifiers. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[arXiv]
[BibTeX]
- Hendrych, D., Besançon, M., and Pokutta, S. (2024). Solving the Optimal Experiment Design Problem with Mixed-integer Convex Methods. Proceedings of the Symposium on Experimental Algorithms.
DOI: 10.4230/LIPIcs.SEA.2024.16
[arXiv]
[code]
[BibTeX]
- Kiem, A., Pokutta, S., and Spiegel, C. (2024). The Four-color Ramsey Multiplicity of Triangles. Proceedings of the Discrete Mathematics Days.
[URL]
[arXiv]
[code]
[BibTeX]
- Mexi, G., Shamsi, S., Besançon, M., and le Bodic, P. (2024). Probabilistic Lookahead Strong Branching Via a Stochastic Abstract Branching Model. Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research.
[arXiv]
[BibTeX]
- Zimmer, M., Spiegel, C., and Pokutta, S. (2024). Sparse Model Soups: A Recipe for Improved Pruning Via Model Averaging. Proceedings of the International Conference on Learning Representations.
[URL]
[arXiv]
[BibTeX]
- Eifler, L., Witzig, J., and Gleixner, A. (2024). Branch and Cut for Partitioning a Graph Into a Cycle of Clusters. Proceedings of the International Symposium on Combinatorial Optimization.
DOI: 10.1007/978-3-031-60924-4_8
[arXiv]
[BibTeX]
- Ghannam, M., Mexi, G., Lam, E., and Gleixner, A. (2024). Branch and Price for the Length-constrained Cycle Partition Problem. Proceedings of the INFORMS Optimization Society Conference.
[URL]
[arXiv]
[BibTeX]
- Hoen, A., Oertel, A., Gleixner, A., and Nordström, J. (2024). Certifying MIP-based Presolve Reductions for 0-1 Integer Linear Programs. Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 310–328.
DOI: 10.1007/978-3-031-60597-0_20
[arXiv]
[BibTeX]
- Kiem, A., Pokutta, S., and Spiegel, C. (2024). Categorification of Flag Algebras. Proceedings of the Discrete Mathematics Days.
[URL]
[BibTeX]
- Martínez-Rubio, D., Roux, C., and Pokutta, S. (2024). Convergence and Trade-offs in Riemannian Gradient Descent and Riemannian Proximal Point. Proceedings of the International Conference on Machine Learning.
[URL]
[arXiv]
[BibTeX]
- Mundinger, K., Pokutta, S., Spiegel, C., and Zimmer, M. (2024). Extending the Continuum of Six-Colorings. Proceedings of the Discrete Mathematics Days.
[URL]
[arXiv]
[BibTeX]
- Pauls, J., Zimmer, M., Kelly, U. M., Schwartz, M., Saatchi, S., Ciais, P., Pokutta, S., Brandt, M., and Gieseke, F. (2024). Estimating Canopy Height at Scale. Proceedings of the International Conference on Machine Learning.
[arXiv]
[code]
[BibTeX]
- Sharma, K., Hendrych, D., Besançon, M., and Pokutta, S. (2024). Network Design for the Traffic Assignment Problem with Mixed-Integer Frank-Wolfe. Proceedings of the INFORMS Optimization Society Conference.
[arXiv]
[BibTeX]
- Zimmer, M., Spiegel, C., and Pokutta, S. (2023). How I Learned to Stop Worrying and Love Retraining. Proceedings of the International Conference on Learning Representations.
[URL]
[arXiv]
[code]
[BibTeX]
- Bestuzheva, K., Gleixner, A., and Achterberg, T. (2023). Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Terms. Proceedings of the Conference on Integer Programming and Combinatorial Optimization, 14–28.
DOI: 10.1007/978-3-031-32726-1_2
[arXiv]
[BibTeX]
- Martínez-Rubio, D., and Pokutta, S. (2023). Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties. Proceedings of the Conference on Learning Theory.
[URL]
[arXiv]
[poster]
[BibTeX]
- Parczyk, O., Pokutta, S., Spiegel, C., and Szabó, T. (2023). Fully Computer-assisted Proofs in Extremal Combinatorics. Proceedings of the AAAI Conference on Artificial Intelligence.
DOI: 10.1609/aaai.v37i10.26470
[URL]
[arXiv]
[code]
[BibTeX]
- Turner, M., Berthold, T., Besançon, M., and Koch, T. (2023). Cutting Plane Selection with Analytic Centers and Multiregression. Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research.
[arXiv]
[BibTeX]
- Wirth, E., Kera, H., and Pokutta, S. (2023). Approximate Vanishing Ideal Computations at Scale. Proceedings of the International Conference on Learning Representations.
[arXiv]
[slides]
[BibTeX]
- Wirth, E., Kerdreux, T., and Pokutta, S. (2023). Acceleration of Frank-Wolfe Algorithms with Open Loop Step-sizes. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[arXiv]
[BibTeX]
- Chmiela, A., Gleixner, A., Lichocki, P., and Pokutta, S. (2023). Online Learning for Scheduling MIP Heuristics. Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 114–123.
DOI: 10.1007/978-3-031-33271-5_8
[arXiv]
[BibTeX]
- Chmiela, A., Muñoz, G., and Serrano, F. (2023). Monoidal Strengthening and Unique Lifting in MIQCPs. Proceedings of the Conference on Integer Programming and Combinatorial Optimization.
[URL]
[BibTeX]
- Criscitiello, C., Martínez-Rubio, D., and Boumal, N. (2023). Open Problem: Polynomial Linearly-convergent Method for G-convex Optimization? Proceedings of the Conference on Learning Theory.
[arXiv]
[BibTeX]
- Ghannam, M., and Gleixner, A. (2023). Hybrid Genetic Search for Dynamic Vehicle Routing with Time Windows. Proceedings of the Conference of the Society for Operations Research in Germany.
[arXiv]
[BibTeX]
- Martínez-Rubio, D., Wirth, E., and Pokutta, S. (2023). Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond. Proceedings of the Conference on Learning Theory.
[arXiv]
[BibTeX]
- Mexi, G., Berthold, T., Gleixner, A., and Nordström, J. (2023). Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning. Proceedings of the 29th International Conference on Principles and Practice of Constraint Programming (CP 2023), 280, 27:1–27:19,
DOI: 10.4230/LIPIcs.CP.2023.27
[arXiv]
[BibTeX]
- Mexi, G., Besançon, M., Bolusani, S., Chmiela, A., Hoen, A., and Gleixner, A. (2023). Scylla: a Matrix-free Fix-propagate-and-project Heuristic for Mixed-integer Optimization. Proceedings of the Conference of the Society for Operations Research in Germany.
[arXiv]
[BibTeX]
- Rué, J. J., and Spiegel, C. (2023). The Rado Multiplicity Problem in Vector Spaces Over Finite Fields. Proceedings of the European Conference on Combinatorics, Graph Theory and Applications.
DOI: 10.5817/CZ.MUNI.EUROCOMB23-108
[URL]
[arXiv]
[code]
[BibTeX]
- Thuerck, D., Sofranac, B., Pfetsch, M., and Pokutta, S. (2023). Learning Cuts Via Enumeration Oracles. Proceedings of the Conference on Neural Information Processing Systems.
[arXiv]
[BibTeX]
- Turner, M., Berthold, T., and Besançon, M. (2023). A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming. Proceedings of the Conference of the Society for Operations Research in Germany.
[arXiv]
[BibTeX]
- Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner, A., Kazachkov, A. M., Khalil, E., Lichocki, P., Lodi, A., Lubin, M., Maddison, C. J., Christopher, M., Papageorgiou, D. J., Parjadis, A., Pokutta, S., … Kun, M. (2022). The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights. Proceedings of the Conference on Neural Information Processing Systems, 176, 220–231.
[URL]
[arXiv]
[BibTeX]
- Búi, M. N., Combettes, P. L., and Woodstock, Z. (2022). Block-activated Algorithms for Multicomponent Fully Nonsmooth Minimization. Proceedings of the ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5428–5432.
DOI: 10.1109/ICASSP43922.2022.9747479
[URL]
[arXiv]
[BibTeX]
- Criado, F., Martínez-Rubio, D., and Pokutta, S. (2022). Fast Algorithms for Packing Proportional Fairness and Its Dual. Proceedings of the Conference on Neural Information Processing Systems.
[arXiv]
[poster]
[BibTeX]
- Macdonald, J., Besançon, M., and Pokutta, S. (2022). Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. Proceedings of the International Conference on Machine Learning.
[arXiv]
[poster]
[video]
[BibTeX]
- Tsuji, K., Tanaka, K., and Pokutta, S. (2022). Pairwise Conditional Gradients without Swap Steps and Sparser Kernel Herding. Proceedings of the International Conference on Machine Learning.
[arXiv]
[summary]
[slides]
[code]
[video]
[BibTeX]
- Parczyk, O., Pokutta, S., Spiegel, C., and Szabó, T. (2022). New Ramsey Multiplicity Bounds and Search Heuristics. Proceedings of the Discrete Mathematics Days.
[arXiv]
[code]
[BibTeX]
- Wäldchen, S., Huber, F., and Pokutta, S. (2022). Training Characteristic Functions with Reinforcement Learning: XAI-methods Play Connect Four. Proceedings of the International Conference on Machine Learning.
[arXiv]
[poster]
[video]
[BibTeX]
- Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Approximately Vanishing Ideal. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[arXiv]
[summary]
[poster]
[code]
[BibTeX]
- Bestuzheva, K., Gleixner, A., and Völker, H. (2022). Strengthening SONC Relaxations with Constraints Derived From Variable Bounds. Proceedings of the Hungarian Global Optimization Workshop HUGO, 41–44.
[URL]
[arXiv]
[BibTeX]
- Carderera, A., Besançon, M., and Pokutta, S. (2021). Simple Steps Are All You Need: Frank-Wolfe and Generalized Self-concordant Functions. Proceedings of the Conference on Neural Information Processing Systems, 34, 5390–5401.
[URL]
[arXiv]
[summary]
[slides]
[poster]
[code]
[BibTeX]
- Chmiela, A., Khalil, E. B., Gleixner, A., Lodi, A., and Pokutta, S. (2021). Learning to Schedule Heuristics in Branch-and-bound. Proceedings of the Conference on Neural Information Processing Systems, 34, 24235–24246.
[URL]
[arXiv]
[poster]
[BibTeX]
- Carderera, A., Diakonikolas, J., Lin, C. Y., and Pokutta, S. (2021, February). Parameter-free Locally Accelerated Conditional Gradients. Proceedings of the International Conference on Machine Learning.
[arXiv]
[slides]
[BibTeX]
- Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2021, January). Projection-Free Optimization on Uniformly Convex Sets. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[arXiv]
[slides]
[BibTeX]
- Sofranac, B., Gleixner, A., and Pokutta, S. (2021). An Algorithm-independent Measure of Progress for Linear Constraint Propagation. Proceedings of the International Conference on Principles and Practice of Constraint Programming, 52:1–17.
DOI: 10.4230/LIPIcs.CP.2021.52
[URL]
[arXiv]
[video]
[BibTeX]
- Chmiela, A., Muñoz, G., and Serrano, F. (2021). On the Implementation and Strengthening of Intersection Cuts for QCQPs. Proceedings of the Conference on Integer Programming and Combinatorial Optimization, 134–147.
DOI: 10.1007/978-3-030-73879-2_10
[BibTeX]
- Combettes, C., and Pokutta, S. (2020, March). Boosting Frank-Wolfe by Chasing Gradients. Proceedings of the International Conference on Machine Learning.
[URL]
[arXiv]
[slides]
[code]
[video]
[BibTeX]
- Diakonikolas, J., Carderera, A., and Pokutta, S. (2020). Locally Accelerated Conditional Gradients. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[URL]
[arXiv]
[slides]
[code]
[BibTeX]
- Pokutta, S., Singh, M., and Torrico Palacios, A. (2020). On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. Proceedings of the International Conference on Machine Learning.
[arXiv]
[slides]
[video]
[BibTeX]
- Hoppmann-Baum, K., Mexi, G., Burdakov, O., Casselgren, C. J., and Koch, T. (2020). Minimum Cycle Partition with Length Requirements. Proceedings of the International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 12296, 273–282.
DOI: 10.1007/978-3-030-58942-4_18
[BibTeX]
- Sofranac, B., Gleixner, A., and Pokutta, S. (2020). Accelerating Domain Propagation: An Efficient GPU-parallel Algorithm Over Sparse Matrices. Proceedings of the 10th IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms, IA3 2020, 1–11.
DOI: 10.1109/IA351965.2020.00007
[arXiv]
[summary]
[slides]
[video]
[BibTeX]
- Ziemke, T., Sering, L., Vargas Koch, L., Zimmer, M., Nagel, K., and Skutella, M. (2020). Flows Over Time As Continuous Limits of Packet-based Network Simulations. Proceedings of the EURO Working Group on Transportation Meeting.
[BibTeX]
- Braun, G., Pokutta, S., Tu, D., and Wright, S. (2019). Blended Conditional Gradients: the Unconditioning of Conditional Gradients. Proceedings of the International Conference on Machine Learning, 97, 735–743.
[URL]
[arXiv]
[summary]
[slides]
[poster]
[code]
[BibTeX]
- Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., and Torrico Palacios, A. (2019). Structured Robust Submodular Maximization: Offline and Online Algorithms. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[URL]
[arXiv]
[BibTeX]
- Combettes, C., and Pokutta, S. (2019). Blended Matching Pursuit. Proceedings of the Conference on Neural Information Processing Systems.
[URL]
[arXiv]
[slides]
[code]
[BibTeX]
- Diakonikolas, J., Carderera, A., and Pokutta, S. (2019). Breaking the Curse of Dimensionality (Locally) to Accelerate Conditional Gradients. Proceedings of the OPTML Workshop Paper.
[URL]
[arXiv]
[slides]
[code]
[BibTeX]
- Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2019). Restarting Frank-Wolfe. Proceedings of the International Conference on Artificial Intelligence and Statistics.
[URL]
[arXiv]
[slides]
[BibTeX]
- Pokutta, S., Singh, M., and Torrico Palacios, A. (2019). On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. Proceedings of the OPTML Workshop Paper.
[URL]
[arXiv]
[slides]
[video]
[BibTeX]
- Pokutta, S., Singh, M., and Torrico Palacios, A. (2018). Efficient Algorithms for Robust Submodular Maximization Under Matroid Constraints. Proceedings of the ICML Workshop Paper.
[URL]
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Zink, D. (2017). Lazifying Conditional Gradient Algorithms. Proceedings of the International Conference on Machine Learning, 70, 566–575.
[URL]
[arXiv]
[slides]
[poster]
[BibTeX]
- Arumugam, K., Kadampot, I., Tahmasbi, M., Shah, S., Bloch, M., and Pokutta, S. (2017). Modulation Recognition Using Side Information and Hybrid Learning. Proceedings of the IEEE DySPAN.
[BibTeX]
- Kusch, C., Rué, J. J., Spiegel, C., and Szabó, T. (2017). Random Strategies Are Nearly Optimal for Generalized Van Der Waerden Games. Proceedings of the European Conference on Combinatorics, Graph Theory and Applications.
[URL]
[arXiv]
[BibTeX]
- Lan, G., Pokutta, S., Zhou, Y., and Zink, D. (2017). Conditional Accelerated Lazy Stochastic Gradient Descent. Proceedings of the International Conference on Machine Learning.
[URL]
[arXiv]
[BibTeX]
- Roy, A., Xu, H., and Pokutta, S. (2017). Reinforcement Learning Under Model Mismatch. Proceedings of the Conference on Neural Information Processing Systems.
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Roy, A. (2016). Strong Reductions for Extended Formulations. Proceedings of the Conference on Integer Programming and Combinatorial Optimization, 9682, 350–361.
DOI: 10.1007/978-3-319-33461-5_29
[arXiv]
[BibTeX]
- Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2016). The Matching Problem Has No Small Symmetric SDP. Proceedings of the Symposium on Discrete Algorithms, 1067–1078.
DOI: 10.1137/1.9781611974331.ch75
[arXiv]
[BibTeX]
- Roy, A., and Pokutta, S. (2016). Hierarchical Clustering Via Spreading Metrics. Proceedings of the Conference on Neural Information Processing Systems.
[URL]
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Zink, D. (2015). Inapproximability of Combinatorial Problems Via Small LPs and SDPs. Proceedings of the Annual Symposium on Theory of Computing, 107–116.
DOI: 10.1145/2746539.2746550
[arXiv]
[video]
[BibTeX]
- Braun, G., and Pokutta, S. (2015). The Matching Polytope Does Not Admit Fully-polynomial Size Relaxation Schemes. Proceedings of the Symposium on Discrete Algorithms, 837–846.
DOI: 10.1137/1.9781611973730.57
[arXiv]
[BibTeX]
- Braun, G., Firorini, S., and Pokutta, S. (2014). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Proceedings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 28, 515–530.
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2014.515
[URL]
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Xie, Y. (2014). Info-greedy Sequential Adaptive Compressed Sensing. Proceedings of the Allerton Conference on Communication, Control, and Computing (Allerton), 858–865.
DOI: 10.1109/ALLERTON.2014.7028544
[arXiv]
[BibTeX]
- Braun, G., and Pokutta, S. (2013). Common Information and Unique Disjointness. Proceedings of the IEEE Symposium on Foundations of Computer Science, 688–697.
[URL]
[BibTeX]
- Braun, G., and Pokutta, S. (2012). An Algebraic Approach to Symmetric Extended Formulations. Proceedings of the International Symposium on Combinatorial Optimization, 7422, 141–152.
DOI: 10.1007/978-3-642-32147-4_14
[arXiv]
[BibTeX]
- Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2012). Approximation Limits of Linear Programs (beyond Hierarchies). Proceedings of the IEEE Symposium on Foundations of Computer Science, 480–489.
DOI: 10.1109/FOCS.2012.10
[arXiv]
[BibTeX]
Full Articles
- Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana, G., Dunjko, V., Egger, D. J., Elmegreen, B. G., Franco, N., Fratini, F., Fuller, B., Gacon, J., Gonciulea, C., Gribling, S., Gupta, S., Hadfield, S., Heese, R., … Zoufal, C. (2024). Challenges and Opportunities in Quantum Optimization. Nature Reviews Physics.
DOI: https://doi.org/10.1038/s42254-024-00770-9
[arXiv]
[BibTeX]
- Carderera, A., Besançon, M., and Pokutta, S. (2024). Scalable Frank-Wolfe on Generalized Self-concordant Functions Via Simple Steps. SIAM Journal on Optimization, 34(3), 2231–2258.
DOI: 10.1137/23M1616789
[arXiv]
[summary]
[slides]
[poster]
[code]
[BibTeX]
- Braun, G., Guzmán, C., and Pokutta, S. (2024). Corrections to “Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization Via Information Theory.” IEEE Transactions on Information Theory, 70, 5408–5409.
DOI: 10.1109/TIT.2024.3357200
[BibTeX]
- Pokutta, S. (2024). The Frank-Wolfe Algorithm: a Short Introduction. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 126(1), 3–35.
DOI: 10.1365/s13291-023-00275-x
[URL]
[arXiv]
[BibTeX]
- Bestuzheva, K., Gleixner, A., and Achterberg, T. (2024). Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Terms. Mathematical Programming.
DOI: https://doi.org/10.1007/s10107-024-02104-0
[arXiv]
[BibTeX]
- Deza, A., Pokutta, S., and Pournin, L. (2024). The Complexity of Geometric Scaling. Operations Research Letters, 52.
DOI: 10.1016/j.orl.2023.11.010
[arXiv]
[BibTeX]
- Parczyk, O., Pokutta, S., Spiegel, C., and Szabó, T. (2024). New Ramsey Multiplicity Bounds and Search Heuristics. Foundations of Computational Mathematics.
DOI: 10.1007/s10208-024-09675-6
[arXiv]
[code]
[BibTeX]
- Bolusani, S., Besançon, M., Gleixner, A., Berthold, T., D’Ambrosio, C., Muñoz, G., Paat, J., and Thomopulos, D. (2024). The MIP Workshop 2023 Computational Competition on Reoptimization. Mathematical Programming Computation.
DOI: 10.1007/s12532-024-00256-w
[arXiv]
[BibTeX]
- Chmiela, A., Muñoz, G., and Serrano, F. (2024). Monoidal Strengthening and Unique Lifting in MIQCPs. Mathematical Programming B.
DOI: 10.1007/s10107-024-02112-0
[URL]
[BibTeX]
- Deza, A., Onn, S., Pokutta, S., and Pournin, L. (2024). Kissing Polytopes. SIAM Journal on Discrete Mathematics.
[arXiv]
[BibTeX]
- Eifler, L., and Gleixner, A. (2024). Safe and Verified Gomory Mixed Integer Cuts in a Rational MIP Framework. SIAM Journal on Optimization, 34(1), 742–763.
DOI: 10.1137/23M156046X
[URL]
[arXiv]
[BibTeX]
- Eifler, L., Nicolas-Thouvenin, J., and Gleixner, A. (2024). Combining Precision Boosting with LP Iterative Refinement for Exact Linear Optimization. INFORMS Journal on Computing.
DOI: 10.1007/s10107-024-02104-0
[arXiv]
[BibTeX]
- Gelß, P., Issagali, A., and Kornhuber, R. (2024). Fredholm Integral Equations for Function Approximation and the Training of Neural Networks. SIAM Journal on Mathematics of Data Science.
DOI: 10.1137/23M156642X
[URL]
[arXiv]
[BibTeX]
- Stengl, S.-M., Gelß, P., Klus, S., and Pokutta, S. (2024). Existence and Uniqueness of Solutions of the Koopman–von Neumann Equation on Bounded Domains. Journal of Physics A: Mathematical and Theoretical.
DOI: 10.1088/1751-8121/ad6f7d
[URL]
[arXiv]
[BibTeX]
- Stengl, S.-M. (2024). An Alternative Formulation of the Quantum Phase Estimation Using Projection-based Tensor Decompositions. Quantum Information Processing, 23.
DOI: 10.1007/s11128-024-04347-4
[URL]
[arXiv]
[BibTeX]
- Designolle, S., Vértesi, T., and Pokutta, S. (2024). Symmetric Multipartite Bell Inequalities Via Frank-Wolfe Algorithms. Physics Review A.
[arXiv]
[BibTeX]
- Tjusila, G., Besançon, M., Turner, M., and Koch, T. (2024). How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem. Operations Research Letters.
DOI: 10.1016/j.orl.2024.107105
[URL]
[arXiv]
[BibTeX]
- Mundinger, K., Pokutta, S., Spiegel, C., and Zimmer, M. (2024). Extending the Continuum of Six-Colorings. Geombinatorics Quarterly, XXXIV.
[URL]
[arXiv]
[BibTeX]
- Vu‐Han, T. L., Sunkara, V., Bermudez‐Schettino, R., Schwechten, J., Runge, R., Perka, C., Winkler, T., Pokutta, S., Weiß, C., and Pumberger, M. (2024). Feature Engineering for the Prediction of Scoliosis in 5q‐Spinal Muscular Atrophy. Journal of Cachexia, Sarcopenia and Muscle.
DOI: 10.1002/jcsm.13599
[URL]
[BibTeX]
- Designolle, S., Iommazzo, G., Besançon, M., Knebel, S., Gelß, P., and Pokutta, S. (2023). Improved Local Models and New Bell Inequalities Via Frank-Wolfe Algorithms. Physical Review Research, 5(4).
DOI: 10.1103/PhysRevResearch.5.043059
[arXiv]
[slides]
[code]
[BibTeX]
- Kevin-Martin, A., Bärmann, A., Braun, K., Liers, F., Pokutta, S., Schneider, O., Sharma, K., and Tschuppik, S. (2023). Data-driven Distributionally Robust Optimization Over Time. INFORMS Journal on Optimization, 5(4), 376–394.
DOI: 10.1287/ijoo.2023.0091
[URL]
[arXiv]
[BibTeX]
- Bienstock, D., Muñoz, G., and Pokutta, S. (2023). Principled Deep Neural Network Training Through Linear Programming. Discrete Optimization, 49.
DOI: 10.1016/j.disopt.2023.100795
[arXiv]
[summary]
[BibTeX]
- Besançon, M., Garcia, J. D., Legat, B., and Sharma, A. (2023). Flexible Differentiable Optimization Via Model Transformations. INFORMS Journal on Computing.
DOI: 10.1287/ijoc.2022.0283
[URL]
[arXiv]
[BibTeX]
- Hunkenschröder, C., Pokutta, S., and Weismantel, R. (2023). Minimizing a Low-dimensional Convex Function Over a High-dimensional Cube. SIAM Journal on Optimization, 33(2), 538–552.
DOI: 10.1137/22M1489988
[arXiv]
[BibTeX]
- Liberti, L., Iommazzo, G., Lavor, C., and Maculan, N. (2023). Cycle-based Formulations in Distance Geometry. Open Journal of Mathematical Optimization, 4(1).
DOI: 10.5802/ojmo.18
[arXiv]
[BibTeX]
- Bestuzheva, K., Gleixner, A., and Vigerske, S. (2023). A Computational Study of Perspective Cuts. Mathematical Programming Computation, 15, 703–731.
DOI: 10.1007/s12532-023-00246-4
[URL]
[arXiv]
[BibTeX]
- Gleixner, A., Gottwald, L., and Hoen, A. (2023). PaPILO: a Parallel Presolving Library for Integer and Linear Programming with Multiprecision Support. INFORMS Journal on Computing.
DOI: 10.1287/ijoc.2022.0171
[arXiv]
[BibTeX]
- Berthold, T., Mexi, G., and Salvagnin, D. (2023). Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump. EURO Journal on Computational Optimization, 11.
DOI: 10.1016/j.ejco.2023.100066
[BibTeX]
- Bestuzheva, K., Chmiela, A., Müller, B., Serrano, F., Vigerske, S., and Wegscheider, F. (2023). Global Optimization of Mixed-integer Nonlinear Programs with SCIP 8.0. Journal of Global Optimization.
DOI: 10.1007/s10898-023-01345-1
[URL]
[arXiv]
[BibTeX]
- Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S. J., … Witzig, J. (2023). Enabling Research Through the SCIP Optimization Suite 8.0. ACM Transactions on Mathematical Software.
DOI: 10.1145/3585516
[arXiv]
[BibTeX]
- Combettes, C., and Pokutta, S. (2023). Revisiting the Approximate Carathéodory Problem Via the Frank-Wolfe Algorithm. Mathematical Programming A, 197, 191–214.
DOI: 10.1007/s10107-021-01735-x
[URL]
[arXiv]
[slides]
[code]
[video]
[BibTeX]
- Eifler, L., and Gleixner, A. (2023). A Computational Status Update for Exact Rational Mixed Integer Programming. Mathematical Programming, 197, 793–812.
DOI: 10.1007/s10107-021-01749-5
[arXiv]
[BibTeX]
- Kreimeier, T., Pokutta, S., Walther, A., and Woodstock, Z. (2023). On a Frank-Wolfe Approach for Abs-smooth Functions. Optimization Methods and Software.
[arXiv]
[BibTeX]
- Kruser, J., Sharma, K., Holl, J., and Nohadani, O. (2023). Identifying Patterns of Medical Intervention in Acute Respiratory Failure: A Retrospective Observational Study. Critical Care Explorations.
[BibTeX]
- Riedel, J., Gelß, P., Klein, R., and Schmidt, B. (2023). WaveTrain: A Python Package for Numerical Quantum Mechanics of Chain-like Systems Based on Tensor Trains. The Journal of Chemical Physics, 158(16), 164801.
DOI: 10.1063/5.0147314
[URL]
[arXiv]
[BibTeX]
- Wilken, S. E., Besançon, M., Kratochvíl, M., Kuate, C. A. F., Trefois, C., Gu, W., and Ebenhöh, O. (2022). Interrogating the Effect of Enzyme Kinetics on Metabolism Using Differentiable Constraint-based Models. Metabolic Engineering.
[BibTeX]
- Besançon, M., Carderera, A., and Pokutta, S. (2022). FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank-Wolfe Algorithms and Conditional Gradients. INFORMS Journal on Computing.
[arXiv]
[summary]
[slides]
[code]
[BibTeX]
- Kerdreux, T., d’Aspremont, A., and Pokutta, S. (2022). Restarting Frank-Wolfe. Journal of Optimization Theory and Applications, 192, 799–829.
DOI: 10.1007/s10957-021-01989-7
[URL]
[arXiv]
[slides]
[BibTeX]
- Sofranac, B., Gleixner, A., and Pokutta, S. (2022). Accelerating Domain Propagation: An Efficient GPU-parallel Algorithm Over Sparse Matrices. Parallel Computing, 109, 102874.
DOI: 10.1016/j.parco.2021.102874
[arXiv]
[summary]
[BibTeX]
- Bolusani, S., and Ralphs, T. K. (2022). A Framework for Generalized Benders’ Decomposition and Its Applications to Multilevel Optimization. Mathematical Programming, 196, 389–426.
DOI: 10.1007/s10107-021-01763-7
[arXiv]
[BibTeX]
- Gelß, P., Klein, R., Matera, S., and Schmidt, B. (2022). Solving the Time-independent Schrödinger Equation for Chains of Coupled Excitons and Phonons Using Tensor Trains. The Journal of Chemical Physics, 156, 024109.
DOI: 10.1063/5.0074948
[URL]
[arXiv]
[BibTeX]
- Sofranac, B., Gleixner, A., and Pokutta, S. (2022). An Algorithm-independent Measure of Progress for Linear Constraint Propagation. Constraints, 27, 432–455.
DOI: 10.1007/s10601-022-09338-9
[arXiv]
[BibTeX]
- Chmiela, A., Muñoz, G., and Serrano, F. (2022). On the Implementation and Strengthening of Intersection Cuts for QCQPs. Mathematical Programming B, 197, 549–586.
DOI: 10.1007/s10107-022-01808-5
[BibTeX]
- Eifler, L., Gleixner, A., and Pulaj, J. (2022). A Safe Computational Framework for Integer Programming Applied to Chvátal’s Conjecture. ACM Transactions on Mathematical Software, 48(2), 1–12.
DOI: 10.1145/3485630
[arXiv]
[BibTeX]
- Hoppmann-Baum, K., Burdakov, O., Mexi, G., Casselgren, C. J., and Koch, T. (2022). Length-Constrained Cycle Partition with an Application to UAV Routing. Optimization Methods and Software.
DOI: 10.1080/10556788.2022.2053972
[BibTeX]
- Iommazzo, G., D’Ambrosio, C., Frangioni, A., and Liberti, L. (2022). Algorithm Configuration Problem. In Encyclopedia of Optimization (pp. 1–8).
DOI: 10.1007/978-3-030-54621-2_749-1
[arXiv]
[BibTeX]
- Kossen, T., Hirzel, M. A., Madai, V. I., Boenisch, F., Hennemuth, A., Hildebrand, K., Pokutta, S., Sharma, K., Hilbert, A., Sobesky, J., Galinovic, I., Khalil, A. A., Fiebach, J. B., and Frey, D. (2022). Towards Sharing Brain Images: Differentially Private TOF-MRA Images with Segmentation Labels Using Generative Adversarial Networks. Frontiers in Artificial Intelligence.
DOI: 10.3389/frai.2022.813842
[BibTeX]
- Nohadani, O., and Sharma, K. (2022). Optimization Under Connected Uncertainty. INFORMS Journal on Optimization.
DOI: 10.1287/ijoo.2021.0067
[arXiv]
[BibTeX]
- Combettes, C., and Pokutta, S. (2021). Complexity of Linear Minimization and Projection on Some Sets. Operations Research Letters, 49(4).
[arXiv]
[code]
[BibTeX]
- Kerdreux, T., Roux, C., d’Aspremont, A., and Pokutta, S. (2021). Linear Bandits on Uniformly Convex Sets. Journal of Machine Learning Research, 22(284), 1–23.
[URL]
[arXiv]
[summary]
[BibTeX]
- Pokutta, S. (2021). Mathematik, Machine Learning Und Artificial Intelligence. Mitteilungen Der DMV.
[URL]
[BibTeX]
- Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., and Torrico Palacios, A. (2021). Structured Robust Submodular Maximization: Offline and Online Algorithms. INFORMS Journal on Computing, 33(4), 1259–1684.
[URL]
[arXiv]
[BibTeX]
- Nüske, F., Gelß, P., Klus, S., and Clementi, C. (2021). Tensor-based Computation of Metastable and Coherent Sets. Physica D: Nonlinear Phenomena, 427, 133018.
DOI: 10.1016/j.physd.2021.133018
[URL]
[arXiv]
[BibTeX]
- Gelß, P., Klus, S., Schuster, I., and Schütte, C. (2021). Feature Space Approximation for Kernel-based Supervised Learning. Knowledge-Based Systems, 221, 106935.
DOI: 10.1016/j.knosys.2021.106935
[URL]
[arXiv]
[BibTeX]
- Klus, S., Gelß, P., Nüske, F., and Noé, F. (2021). Symmetric and Antisymmetric Kernels for Machine Learning Problems in Quantum Physics and Chemistry. Machine Learning: Science and Technology, 2(4), 18958.
DOI: 10.1088/2632-2153/ac14ad
[URL]
[arXiv]
[BibTeX]
- Ramin, E., Bestuzheva, K., Gargalo, C., Ramin, D., Schneider, C., Ramin, P., Flores-Alsina, X., Andersen, M., and Gernaey, K. (2021). Incremental Design of Water Symbiosis Networks with Prior Knowledge: the Case of an Industrial Park in Kenya. Science of the Total Environment, 751.
DOI: 10.1016/j.scitotenv.2020.141706
[BibTeX]
- Ziemke, T., Sering, L., Vargas Koch, L., Zimmer, M., Nagel, K., and Skutella, M. (2021). Flows Over Time As Continuous Limits of Packet-based Network Simulations. Transportation Research Procedia, 52, 123–130.
DOI: 10.1016/j.trpro.2021.01.014
[URL]
[BibTeX]
- Kusch, C., Rué, J. J., Spiegel, C., and Szabó, T. (2019-09). On the Optimality of the Uniform Random Strategy. Random Structures & Algorithms, 55(2), 371–401.
DOI: 10.1002/rsa.20829
[URL]
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Zink, D. (2019). Affine Reductions for LPs and SDPs. Mathematical Programming, 173, 281–312.
DOI: 10.1007/s10107-017-1221-9
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Zink, D. (2019). Lazifying Conditional Gradient Algorithms. The Journal of Machine Learning Research, 20(71), 1–42.
[URL]
[arXiv]
[BibTeX]
- Klus, S., and Gelß, P. (2019). Tensor-based Algorithms for Image Classification. Algorithms, 12(11), 240.
DOI: 10.3390/a12110240
[URL]
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Roy, A. (2018). Strong Reductions for Extended Formulations. Mathematical Programming, 172, 591–620.
DOI: 10.1007/s10107-018-1316-y
[arXiv]
[BibTeX]
- Le Bodic, P., Pfetsch, M., Pavelka, J., and Pokutta, S. (2018). Solving MIPs Via Scaling-based Augmentation. Discrete Optimization, 27, 1–25.
DOI: 10.1016/j.disopt.2017.08.004
[arXiv]
[BibTeX]
- Braun, G., Brown-Cohen, J., Huq, A., Pokutta, S., Raghavendra, P., Roy, A., Weitz, B., and Zink, D. (2017). The Matching Problem Has No Small Symmetric SDP. Mathematical Programming, 165, 643–662.
DOI: 10.1007/s10107-016-1098-z
[arXiv]
[BibTeX]
- Braun, G., Guzmán, C., and Pokutta, S. (2017). Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization. IEEE Transactions on Information Theory, 63(7), 4709–4724.
DOI: 10.1109/TIT.2017.2701343
[arXiv]
[BibTeX]
- Braun, G., Jain, R., Lee, T., and Pokutta, S. (2017). Information-theoretic Approximations of the Nonnegative Rank. Computational Complexity, 26, 147–197.
DOI: 10.1007/s00037-016-0125-z
[URL]
[BibTeX]
- Roy, A., and Pokutta, S. (2017). Hierarchical Clustering Via Spreading Metrics. Journal of Machine Learning Research, 18, 1–35.
[URL]
[arXiv]
[BibTeX]
- Braun, G., Firorini, S., and Pokutta, S. (2016). Average Case Polyhedral Complexity of the Maximum Stable Set Problem. Mathematical Programming, 160(1), 407–431.
DOI: 10.1007/s10107-016-0989-3
[arXiv]
[BibTeX]
- Braun, G., and Pokutta, S. (2016). Common Information and Unique Disjointness. Algorithmica, 76(3), 597–629.
DOI: 10.1007/s00453-016-0132-0
[URL]
[BibTeX]
- Braun, G., and Pokutta, S. (2016). A Polyhedral Characterization of Border Bases. SIAM Journal on Discrete Mathematics, 30(1), 239–265.
DOI: 10.1137/140977990
[arXiv]
[BibTeX]
- Braun, G., Firorini, S., Pokutta, S., and Steurer, D. (2015). Approximation Limits of Linear Programs (beyond Hierarchies). Mathematics of Operations Research, 40(3), 756–772.
DOI: 10.1287/moor.2014.0694
[arXiv]
[BibTeX]
- Braun, G., Pokutta, S., and Xie, Y. (2015). Info-greedy Sequential Adaptive Compressed Sensing. IEEE Journal of Selected Topics in Signal Processing, 9(4), 601–611.
DOI: 10.1109/JSTSP.2015.2400428
[arXiv]
[BibTeX]
- Braun, G., and Pokutta, S. (2011). Random Half-integral Polytopes. Operations Research Letters, 39(3), 204–207.
DOI: 10.1016/j.orl.2011.03.003
[URL]
[BibTeX]
- Braun, G., and Pokutta, S. (2010). Rank of Random Half-integral Polytopes. Electronic Notes in Discrete Mathematics, 36, 415–422.
DOI: 10.1016/j.endm.2010.05.053
[URL]
[BibTeX]