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Gray codes

• Listing of the objects such that consecutives ones differ in local change.

• A first step towards efficient generation.

◦ n-bitstrings by bitflips [Gray 53]

◦ binary trees on n nodes by rotation [Lucas, Roelants van Baronaigien, Ruskey 93]

◦ permutations of [n] by adjacent transpositions [Steinhaus, Johnson, Trotter 63]

000110→ 000100

→

32415→ 32145

◦ spanning trees by edge exchanges [Holzmann, Harary 72]

T → T + e − f
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Flip graphs

• Graph where V =combinatorial objects, E =local change.

• Examples:

Flip graph has Hamilton cycle ⇐⇒ Existance of Gray code
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Lack of common strategies

• Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:

◦ Counting ← generating functions

◦ Random sampling ← markov chains

◦ Optimization ← linear programming

◦ Exhaustive generation ← ???

• Many tailormade algorithms, few general approaches.

◦ Reverse-search [Avis, Fukuda 96]

◦ ECO framework [Barcucci, del Lungo, Pergola, Pinzani 99]

◦ Reflectable-languages [Li, Sawada 09]

◦ Bubble-languages [Ruskey, Sawada, Williams 12]

• This talk: the Greedy approach.
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What is a greedy Gray code?

• Greedy approach: Perform locally optimal move. Don’t worry too much
about the future.

• Gray codes: [Williams 13]

◦ Rank the flips.

◦ Repeat: Perform the highest ranked flip such that a new object is
generated.
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Examples

• n-bitstrings by bitflips.

• binary trees on n nodes by rotation.

• permutations of [n] by prefix-reversal.

• permutations of [n] by transpositions.

• n pancakes with a burnt side by flips.

• permutations of [n] by adjacent transpositions.

Not the traditional viewpoint.
























A bit of discussion

• Easy algorithms conceptually. 3



A bit of discussion

• Easy algorithms conceptually. 3

• Easy algorithms to implement. 3



A bit of discussion

• Easy algorithms conceptually. 3

• Easy algorithms to implement. 3

• By default: Very computationally inefficient 7



A bit of discussion

• Easy algorithms conceptually. 3

• Easy algorithms to implement. 3

• By default: Very computationally inefficient 7

• Why do they work?



A bit of discussion

• Easy algorithms conceptually. 3

• Easy algorithms to implement. 3

• By default: Very computationally inefficient 7

• Why do they work?

◦ cf. the theory of matroids in optimization.
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Introduction

• Zig-zag framework [Hartung, Hoang, Mütze, Williams 20]

◦ Pattern avoiding permutations.

◦ Quotientopes [Hoang, Mütze 20]

◦ Pattern-avoiding rectangulations [M, Mütze 20]

• Main idea: Encode combinatorial objects as a set Fn ⊆ Sn of permuta-
tions of length n.

◦ Graph associahedra [Cardinal, M, Mütze 21+]

• Beyond permutations: Just be inspired by them.

• C++ implementation available on the combinatorial object server:
www.combos.org
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A simple algorithm

• Start with the identity object.

• Repeat: perform the flip such that:

◦ it generates a new object from the class, and

◦ it flips the elements with highest value

• What is the difference with the generic greedy?

• Reminder: SJT































































Tree of permutations for SJT


































































































































































































































































Tree of permutations for SJT

Key insight: The tree of permutations and the zig-zag
algorithm produce the same listings.





































































































































































Pruning
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Zig-zag languages

• When does this work?

• A: Zig-zag conditions

◦ closed under deletion of n

◦ If π ∈ F then nπ, πn ∈ F

Very compatible with pattern-avoidance
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General approach

Combinatorial
objects

Set of
permutations
Fn ⊆ Sn

σ

• run zig-zag algorithm

List = ZZ(Fn) σ−1(List)

ZZ σ−1(ZZ)

• interpret zig-zag algorithm under the bijection
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• Repeat: Perform a flip such that:

◦ a new permutation from the family is generated, and

◦ it flips the largest value.

• Naive implementation is very inefficient.

• Permutations are processed in a “priority-queue” fashion.

• Elements change direction when they cannot be moved.

Highest priority

Lowest priority

7
12345 12354 12534 15234 51234 51243



























































































































Towards efficiency: Memoryless

• Repeat: Perform a flip such that:

◦ a new permutation from the family is generated, and

◦ it flips the largest value.

• Naive implementation is very inefficient.

• Permutations are processed in a “priority-queue” fashion.

• Elements change direction when they cannot be moved.

• Memoryless version of the algorithm!

Highest priority

Lowest priority

7
12345 12354 12534 15234 51234 51243



Towards efficiency: membership testing

• We only need to detect pruned branches.






















































Towards efficiency: membership testing

• We only need to detect pruned branches.

• Difference membership testing.
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Without permutations: another view-point

• Try to directly construct a tree of the objects.

• Spiritual zig-zag condition.

◦ closed under deletion of the largest element.

◦ closed under insertion at the beginning and at the end.






Examples: BRGC and Binary trees

BRGC:



















































































































































































































































































































































































































































Examples: BRGC and Binary trees

Binary trees:
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• permutations of [n] by prefix-reversal.

• permutations of [n] by transpositions.

• n pancakes with a burnt side by flips.

• index-based Gray codes.



Prefix-based Gray codes
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• Start with any object.

• Repeat: perform the flip such that:

◦ it generates a new object from the class, and

◦ it flips the elements within the shortest prefix

• What is the difference with the generic greedy? Zig-zag?
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Examples

• permutations of [n] by prefix-reversal.

• permutations of [n] by transpositions.

• n pancakes with a burnt side by flips.

• n-bitstrings by prefix-complementation


































































Proof: prefix-complementation.































































































































































































































































































































































































































































































































































































































































































































































New: a greedy Gray code for spanning trees

• Start with any spanning tree.

• Repeat: perform the flip T → T + i − j such that:

◦ it generates a new object from the class, and

◦ max{i , j} is maximized and break ties by minimizing min{i , j}.

• Label the edges in any order.














































































Example: Spanning trees
















































































































































































































































Proof: Spanning trees
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Some surprises/remarks about the spanning tree algorithm

• A lot of things don’t matter.

◦ Labelling of the edges.

◦ Starting spanning tree.

◦ tie-breaking rule.

• Not so clear how to implement efficiently.

• Works for matroids!
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Horizons

• All correctness proofs look very very similar.

◦ Is there some general principle at play?

◦ Something like the zig-zag conditions?

• Memoryless?

◦ {0, 1}n case seems easier than the general case.
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A link between worlds (?)

• Despite their differences:

◦ Any start v/s identity start.

◦ Efficient v/s not yet efficient.

• Duality: values v/s indices.

• Link (?): inversion table.
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Summary

• Greedy gray codes: powerful tool for generation.

• Two approaches zig-zag and prefix-based.

• New matroid result.
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Open questions

• Too many.

• Better understanding of prefix-based greedy Gray codes.

• Potential link between dual approaches?

• Concrete: O(1) delay for spanning trees.

◦ Known: Amortized O(1) delay.
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