|IOL & DISCOGA research seminar

Greedy Strategies
for Exhaustive Generation

Arturo Merino

The Greedy Gray Code Algorithm

Aaron Williams

Department of Mathematics and Statistics, McGill University
haron@uvic.ca

Abstract. We reinterpret classic Gray codes for binary strings, permu-
tations, combinations, binary trees, and set partitions using a simple
greedy algorithm. The algorithm begins with an initial object and an
ordered list of operations, and then repeatedly creates a new object by
applying the first possible operation to the most recently created object.

1 Introduction

Let B(n) be the set of n-bit binary strings. The binary reflected Gray code
Gray(n) orders B(n) so that successive strings have Hamming distance one
(i.e.. thev differ in one bit). For example. the order for n = 3 appears below.

The Greedy Gray Code Algorithm

Aaron Williams

Department of Mathematics and Statistics, McGill University
haron@uvic.ca

Abstract. We reinterpret classis
tations, combinations, binary tr
greedy algorithm. The algorithn
ordered list of operations, and tl
applying the first possible operat ELIZABETH HARTUNG, HUNG P. HOANG, TORSTEN MUTZE, AND AARON WILLIAMS

COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES.
I. FUNDAMENTALS

ABSTRACT. In this work we present a general and versatile algorithmic framework for exhaustively

1 Introduction generating a large variety of different combinatorial objects, based on encoding them as

permutations. This approach provides a unified view on many known results and allows us to
Let B[:Tl] be the set of n-bit binar prove many new ones. In particular, we obtain the following four classical Gray codes as special
Gray (ﬂ,} orders B(ﬂ) so that succe cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an n-element

(i.e.. thev differ in one bit). For exa set by adjacent transpositions; the binary reflected Gray code to generate all n-bit strings by
flipping a single bit in each step; the Gray code for generating all n-vertex binary trees by
rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions
of an n-element ground set by element exchanges due to Kaye.

We present two distinct applications for our new framework: The first main application is the
generation of pattern-avoiding permutations, vielding new Gray codes for different families of
permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular
patterns, barred patterns, boxed patterns, Bruhat-restricted patterns, mesh patterns, monotone
and geometric grid classes, and many others. We also obtain new Gray codes for all the
combinatorial objects that are in bijection to these permutations, in particular for five different
types of geometric rectangulations, also known as floorplans, which are divisions of a square
into n rectangles subject to certain restrictions.

The second main application of our framework are lattice congruences of the weak order on
the symmetric group S,,. Recently, Pilaud and Santos realized all those lattice congruences as
(n — 1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra,
permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice
congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope,

Introduction

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings. OOGCGC OAAO

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.

o n-bitstrings.

o permutations of [n] 12734 {324

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
- 2)
o permutations of [n] b
o binary trees on n nodes D @

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

e Objective: Output each object exactly once.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

e Objective: Output each object exactly once.
o fundamental algorithmic task.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

e Objective: Output each object exactly once.
o fundamental algorithmic task.
o key component in many algorithms.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

e Objective: Output each object exactly once.
o fundamental algorithmic task.
o key component in many algorithms.

e Dream: O(1) time between generated objects.

I Exhaustive generation problems

e Given: Some combinatorial objects of interest.
o n-bitstrings.
o permutations of [n]
o binary trees on n nodes
o spanning trees of a given graph.

e Objective: Output each object exactly once.
o fundamental algorithmic task.
o key component in many algorithms.

e Dream: O(1) time between generated objects.

v

delay

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

o n-bitstrings by bitflips (crys3

000110 — 00010QK— 1
1 A

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

o n-bitstrings by bitflips (crys3
000110 — 000100

O blnal’y treeS on n nOdeS by rOtatIOH [Lucas, Roelants van Baronaigien, Ruskey 93]

(45 (4

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

o n-bitstrings by bitflips (cry s
000110 — 000100

O blnal’y treeS on n nOdeS by rOtatIOn [Lucas, Roelants van Baronaigien, Ruskey 93]

(45 g

O permUtathnS Of [n] by adJacent tranSpOSIthnS [Steinhaus, Johnson, Trotter 63]
32415 — 32145 -

—

—t 7

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

o n-bitstrings by bitflips (cry s
000110 — 000100

O blnary treeS on n nOdeS by rOtatIOn [Lucas, Roelants van Baronaigien, Ruskey 93]

ﬁ

O permUtathnS Of [n] by adJacent tranSpOSIthnS [Steinhaus, Johnson, Trotter 63]
32415 — 32145

o spanning trees by edge exchanges irotzmann, Harary 72)

I'—=T+e—f

I Gray codes

e Listing of the objects such that consecutives ones differ in local change.

o n-bitstrings by bitflips (cry s
000110 — 000100

O blnary treeS on n nOdeS by rOtatIOn [Lucas, Roelants van Baronaigien, Ruskey 93]

ﬁ

O permUtathnS Of [n] by adJacent tranSpOSIthnS [Steinhaus, Johnson, Trotter 63]
32415 — 32145

o spanning trees by edge exchanges irotzmann, Harary 72)

I'—=T+e—f

e A first step towards efficient generation.

I Flip graphs

e Graph where V =combinatorial objects, E =local change.

I Flip graphs

e Graph where V =combinatorial objects, E =local change.

e Examples:

/]A 324
N -~ L
2734
O N A O 31 >
~ / | |
OC 213 n32

I Flip graphs

e Graph where V =combinatorial objects, E =local change.

e Examples:

Flip graph has Hamilton cycle < Existance of Gray code
?WHA

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:

o Counting < generating functions

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:

o Counting < generating functions
o Random sampling <— markov chains

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.
o Reverse-search (s Fukuda o6)

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.
o Reverse-search [avs, rukuda o6]
©) ECO fra meWOrk [Barcucci, del Lungo, Pergola, Pinzani 99]

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.
o Reverse-search (s Fukuda o6)
O ECO fra mework [Barcucci, del Lungo, Pergola, Pinzani 99]
o Reflectable-languages (i, sawada 09)

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.
o Reverse-search (s Fukuda o6)
O ECO fra mework [Barcucci, del Lungo, Pergola, Pinzani 99]
o Reflectable-languages (i, sawada 09)
o Bubble-la NZUAEZES [Ruskey, Sawada, Williams 12]

I Lack of common strategies

e Other fundamental tasks on combinatorial objects have very powerfull
and well understood techniques:
o Counting < generating functions
o Random sampling <— markov chains
o Optimization < linear programming
o Exhaustive generation < 777

e Many tailormade algorithms, few general approaches.
o Reverse-search (s Fukuda o6)
O ECO fra mework [Barcucci, del Lungo, Pergola, Pinzani 99]
o Reflectable-languages (i, sawada 09)
o Bubble-la NZUAEZES [Ruskey, Sawada, Williams 12]

e This talk: the Greedy approach.

Greedy Gray codes

I What is a greedy Gray code?

e Greedy approach: Perform locally optimal move. Don't worry too much
about the future.

I What is a greedy Gray code?

e Greedy approach: Perform locally optimal move. Don't worry too much
about the future.

® Gray codes: [Williams 13]

I What is a greedy Gray code?

e Greedy approach: Perform locally optimal move. Don't worry too much
about the future.

® Gray codes: [Williams 13]
o Rank the flips.

I What is a greedy Gray code?

e Greedy approach: Perform locally optimal move. Don't worry too much
about the future.

® Gray codes: [Williams 13]

o Rank the flips.

o Repeat: Perform the highest ranked flip such that a new object is
generated.

I Examples

e n-bitstrings by bitflips.
NN}

I Examples

e n-bitstrings by bitflips.
e binary trees on n nodes by rotation.

D \
Y
ORI

SH®

b

0

J
17
l

I Examples

e n-bitstrings by bitflips.
e binary trees on n nodes by rotation.
e permutations of [n] by transpositions.

3a T
2‘1\“
21
-

A2

>

Z
3

| T

I Examples

e n-bitstrings by bitflips.

e binary trees on n nodes by rotation.

e permutations of [n] by transpositions.

e permutations of [n] by adjacent transpositions.

{23 (5]
1 23 15] 4
L2 [5[3 "
PGBl 231
@Az%%

z « 2 43

I Examples

e n-bitstrings by bitflips.

e binary trees on n nodes by rotation.

e permutations of
e permutations of
e permutations of

1]
W
1]

by transpositions.
by adjacent transpositions.
by prefix-reversal.

I Examples

e n-bitstrings by bitflips.

e binary trees on n nodes by rotation.
permutations of [n]| by transpositions.
permutations of [n| by adjacent transpositions.

permutations of [n]| by prefix-reversal.
n pancakes with a burnt side by flips.

I Examples

e n-bitstrings by bitflips. BREC

e binary trees on n nodes by rotation.
permutations of [n]| by transpositions.
permutations of [n] by adjacent transpositions.

permutations of [n]| by prefix-reversal.
n pancakes with a burnt side by flips.

Not the traditional viewpoint.

I A bit of discussion

e Easy algorithms conceptually. v

I A bit of discussion

e Easy algorithms conceptually. v

e Easy algorithms to implement. v/

I A bit of discussion

e Easy algorithms conceptually. v

e Easy algorithms to implement. v/

e By default: Very computationally inefficient X

I A bit of discussion

e Easy algorithms conceptually. v

e Easy algorithms to implement. v/
e By default: Very computationally inefficient X

e \Why do they work?

I A bit of discussion

e Easy algorithms conceptually. v

e Easy algorithms to implement. v/
e By default: Very computationally inefficient X

e \Why do they work?
o cf. the theory of matroids in optimization.

/ig-zag framework

I Introduction

® ZIg—Zag fl’a meWOI’k [Hartung, Hoang, Miitze, Williams 20]

I Introduction

® ZIg—Zag fl’a meWOrk [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.

I Introduction

® ZIg—Zag fl’a meWOrk [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
O QUOtlentOpeS [Hoang, Miitze 20]

I Introduction

® Zig—zag fra mework [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
o Quotientopes (Hoang, mitze 20
o Pattern-avoiding rectangulations i, mitz 20

I Introduction

® Zig—zag fra mework [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
o Quotientopes (Hoang, mitze 20
o Pattern-avoiding rectangulations i, mitz 20
o Graph associahedra (cadinal, M, Mitze 2141

I Introduction

® Zig—zag fra mework [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
o Quotientopes (Home. mitz 20
o Pattern-avoiding rectangulations m, witz 20
o Graph associahedra (cadinal, M, Mitze 2141

e C++ implementation available on the combinatorial object server:
WWW.combos.org

I Introduction

® Zig—zag fra mework [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
o Quotientopes (Home. mitz 20
o Pattern-avoiding rectangulations m, witz 20
o Graph associahedra (cadinal, M, Mitze 2141

e C++ implementation available on the combinatorial object server:
WWW.combos.org

¢ Main idea: Encode combinatorial objects as a set F, C S, of permuta-
tions of length n.

I Introduction

® Zig—zag fra mework [Hartung, Hoang, Miitze, Williams 20]
o Pattern avoiding permutations.
o Quotientopes (Home. mitz 20
o Pattern-avoiding rectangulations m, mitz 20
o Graph associahedra (cadinal, M, Mitze 2141

e C++ implementation available on the combinatorial object server:
WWW.combos.org

¢ Main idea: Encode combinatorial objects as a set F, C S, of permuta-
tions of length n.

e Beyond permutations: Just be inspired by them.

I A simple algorithm

e Start with the identity object.

I A simple algorithm

e Start with the identity object.

e Repeat: perform the flip such that:

I A simple algorithm

e Start with the identity object.
e Repeat: perform the flip such that:

o it generates a new object from the class, and

I A simple algorithm

e Start with the identity object.
e Repeat: perform the flip such that:
o it generates a new object from the class, and

o it flips the elements with highest value

I A simple algorithm

e Start with the identity object.
e Repeat: perform the flip such that:
o it generates a new object from the class, and

o it flips the elements with highest value

e —

e What is the difference with the generic greedy?

I A simple algorithm

e Start with the identity object.
e Repeat: perform the flip such that:
o it generates a new object from the class, and

o it flips the elements with highest value

e What is the difference with the generic greedy?

e Reminder: SJT

nz34
f 2473

————

423

g n 2>

I Tree of permutations for SJT

‘]—fﬂe

T e - Build a reculsive éezwuor\‘;on
L

/\

ﬂ\ /N

Sz (12> (327 3%2 32a 234 2

————

- —>

Pacssaatil

I Tree of permutations for SJT

Key insight: The tree of permutations and the zig-zag
algorithm produce the same listings.

) -‘c'.or\
Roap . Devble induc
/—’&— —\r\r~+(€:ﬁ+°hjb_\‘
’sz

I Zig-zag languages

e When does this work?

I Zig-zag languages

e When does this work?

e A: Zig-zag conditions

I Zig-zag languages

e When does this work?

e A: Zig-zag conditions 123 q% /Z\\,/\

o closed under deletion of n

I Zig-zag languages

e When does this work?

e A: Zig-zag conditions
o closed under deletion of n
olf m € F then nw,mn &€ F

I Zig-zag languages

e When does this work?

e A: Zig-zag conditions

o closed under deletion of n

olf m € F then nw,mn &€ F
N\ —

Very compatible with pattern-avoidance

I General approach

Combinatorial
objects

I General approach

Set of
permutations

Fn C 5,

Combinatorial
objects

I General approach

Set of | o Combinatorial
?:erg uéatlons - objects
n = n

e run zig-zag algorithm

List = ZZ(F,) » o '(List)

I General approach

Set of _ o Combinatorial
permutations < objects
Fn g Sn
e run zig-zag algorithm
List = ZZ(F,) » o ‘(List)
e interpret zig-zag algorithm under the bijection
Y4 » o Y(Z2Z)

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

e Naive implementation is very inefficient.

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

e Naive implementation is very inefficient.

e Permutations are processed in a “priority-queue” fashion.

A | Lowest priority

/)\ Highest priority

N

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

e Naive implementation is very inefficient.

e Permutations are processed in a “priority-queue” fashion.
| Lowest priority e i3 W\o\,:vtj 0

Highest priority

e Elements change direction when they cannot be moved. chere AT N
C _+1/L63 W\QU:V\j)

——

12345) 12354 12534 15234 (91234 51243
- - - - X —p

I Towards efficiency: Memoryless

e Repeat: Perform a flip such that:
o a new permutation from the family is generated, and
o it flips the largest value.

e Naive implementation is very inefficient.

e Permutations are processed in a “priority-queue” fashion.
| Lowest priority

Highest priority

e Elements change direction when they cannot be moved.

12345 12354 12534 15234 51234 51243
< < < < X —=

e Memoryless version of the algorithm!

I Towards efficiency: membership testing

e \We only need to detect pruned branches.

A

I Towards efficiency: membership testing

e \We only need to detect pruned branches.

e Difference membership testing.

J%QES/

I Without permutations: another view-point

e Try to directly construct a tree of the objects.

I Without permutations: another view-point

e Try to directly construct a tree of the objects.

e Spiritual zig-zag condition.

I Without permutations: another view-point

e Try to directly construct a tree of the objects.

e Spiritual zig-zag condition.

o closed under deletion of the largest element.

I Without permutations: another view-point

e Try to directly construct a tree of the objects.

e Spiritual zig-zag condition.
o closed under deletion of the largest element.

o closed under insertion at the beginning and at the end.
b

I Examples: BRGC and Binary trees

BRGC:
S S Reakless \‘)UMULA - Yo
iOJf\‘I C Dele ”KGCCQ‘X
o &
P(\)\'Q’(/MMQ.' /\ _Lnézflcr\lcceej/\

[Ooo 004 OM OO J

I Non-examples (7)
non-nccesso-r‘:“n o\d\/a\aw‘\'

e permutations of [n] by transpositions.

I Non-examples (7)

e permutations of [n] by transpositions.

e permutations of [n] by prefix-reversal.

(2>aT

é

224 1Y

I Non-examples (7)

e permutations of [n] by transpositions.
e permutations of [n] by prefix-reversal.

e n pancakes with a burnt side by flips.

I Non-examples (7)

e permutations of [n] by transpositions.
e permutations of [n] by prefix-reversal.
e n pancakes with a burnt side by flips.

e /ndex-based Gray codes.

Prefix-based Gray codes
7

I A simple algorithm

e Start with any object.

I A simple algorithm

e Start with any object.

e Repeat: perform the flip such that:

I A simple algorithm

e Start with any object.
e Repeat: perform the flip such that:

o it generates a new object from the class, and

I A simple algorithm

e Start with any object.
e Repeat: perform the flip such that:
o it generates a new object from the class, and

o it flips the elements within the shortest prefix

I A simple algorithm

e Start with any object.
e Repeat: perform the flip such that:
o it generates a new object from the class, and

o it flips the elements within the shortest prefix

e What is the difference with the generic greedy? Zig-zag?

I Examples

e permutations of [n] by transpositions.
e permutations of [n] by prefix-reversal.

e n pancakes with a burnt side by flips.

I Examples

e permutations of [n] by transpositions.
e permutations of [n] by prefix-reversal.
e n pancakes with a burnt side by flips.

e n-bitstrings by prefix-complementation

I Proof: prefix-complementation.
63" K\/\O\«V[/\",OV\‘-
ﬂgr‘- TG ”‘\3‘ a(Ww‘lé Uuot‘(éé 0N r\’b;‘\'ercivSs when

640\()(@#% w/ 0«13 @."‘éip;u:j ,
n—1

'\(\A ugl’;cn\ “= Ybl-l'/’}/o
S;M MUHN'MJJ :
on (\-"\‘ , % ;

k;~\'-\’<‘\'ri"‘5s) { .
’J‘ [)
ndvckien)C\ :r/,\//l\/ / A
yUel euer
30,\ aA —‘a?‘\'(J‘J{{ ? !
p A ——) 4

I New: a greedy Gray code for spanning trees

e Label the edges in any order.

e Start with any spanning tree.

e Repeat: perform the flip T — T +\i—j such that:
o it generates a new object from the class, and

o max{/, j} is maximized and break ties by minimizing min{/,}.

e

I Example: Spanning trees

I Proof: Spanning trees

j‘,w\uc;k:c,v\ o N1
SN —

i.,\o\uc‘\clc"
T

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.

o Labelling of the edges.

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.
o Labelling of the edges.

o Starting spanning tree.

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.
o Labelling of the edges.
o Starting spanning tree.

o tie-breaking rule.

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.
o Labelling of the edges.
o Starting spanning tree.

o tie-breaking rule.

e Not so clear how to implement efficiently.

I Some surprises/remarks about the spanning tree algorithm

e A lot of things don't matter.
o Labelling of the edges.
o Starting spanning tree.

o tie-breaking rule.

e Not so clear how to implement efficiently.

e Works for matroids!

I Horizons

e All correctness proofs look very very similar.

I Horizons

e All correctness proofs look very very similar.

o Is there some general principle at play?

I Horizons

e All correctness proofs look very very similar.
o Is there some general principle at play?

o Something like the zig-zag conditions?

I Horizons

e All correctness proofs look very very similar.
o Is there some general principle at play?
o Something like the zig-zag conditions?

o {0,1}" case seems easier than the general case.

I Horizons

e All correctness proofs look very very similar.
o Is there some general principle at play?
o Something like the zig-zag conditions?

o {0,1}" case seems easier than the general case.

e Memoryless?

Final remarks

I A link between worlds (7)

e Despite their differences:

I A link between worlds (7)

e Despite their differences:

o Any start v/s identity start.

I A link between worlds (7)

e Despite their differences:
o Any start v/s identity start.

o Efficient v/s not yet efficient.

I A link between worlds (7)

e Despite their differences:
o Any start v/s identity start.

o Efficient v/s not yet efficient.

e Duality: values v/s indices.

I A link between worlds (7)

e Despite their differences:
o Any start v/s identity start.

o Efficient v/s not yet efficient.
e Duality: values v/s indices.

e Link (?): inversion table.

I Summary

e Greedy gray codes: powerful tool for generation.

I Summary

e Greedy gray codes: powerful tool for generation.

e Two approaches zig-zag and prefix-based.

I Summary

e Greedy gray codes: powerful tool for generation.
e Two approaches zig-zag and prefix-based.

e New matroid result.

I Open questions

e 00 many.

I Open questions

e 00 many.

e Better understanding of prefix-based greedy Gray codes.

I Open questions

e 00 many.
e Better understanding of prefix-based greedy Gray codes.

e Potential link between dual approaches?

I Open questions 3 rd Poncokes

R 2 e
— 2 = =] g
e Too many. =\ — () =
e Better understanding of prefix-based greedy Gray codes.
=
e Potential link between dual approaches? -
o
/—1)
e Concrete: O(1) de.lay for spanning trees. LL;]_/_‘
o Known: Amortized O(1) delay.
D

gl —
T han\cs | =

	Introduction
	Greedy gray codes
	Zig-zag framework
	Prefix-based Gray codes
	Prefix-based Gray codes

