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Importance of Feature Extraction
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Non-Noisy Data [6]
Setup
Let X = {X;,...,Xs} € R" be a data set. Consider the ideal

G:={g € R[Xy,...,Xn] | g(x) = 0 forall x € X}.
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Non-Noisy Data [6]
Setup
Let X = {X4,...,Xs} € R" be a data set. Consider the ideal

G:={g € R[Xy,...,Xn] | g(x) = 0 forall x € X}.

Multiclass Classification

e Dataset X = {x4,...,%s} € R" and labels
Y=(..,¥) C{1,...,R}®
° LetG=UPF, G ={gr....gt}

- G(X) — 91(X1) ga(X1) ... Gi(xq)
G(X) := : = : : : € Mats +(R).
— Gxs) — 91(Xs) Ga2(Xs) ... Gi(Xs)
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Non-Noisy Data [6]
Setup
Let X = {X4,...,Xs} € R" be a data set. Consider the ideal

G:={g € R[Xy,...,Xn] | g(x) = 0 forall x € X}.

Multiclass Classification

e Dataset X = {x4,...,%s} € R" and labels
Y=(..,¥) C{1,...,R}®
° LetG=UPF, G ={gr....gt}

- G(X) — 91(X1) ga(X1) ... Gi(xq)
G(X) := : = : : : € Mats +(R).
— Gxs) — 91(Xs) Ga2(Xs) ... Gi(Xs)

e Train a classiﬁ@ﬁa@ﬁqW@(XL)edevh.ConditionalGradients 2/16



Setting: Noisy Data
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Setting: Noisy Data

Let X = {X;,...,Xs} C R" be a datasetand f € R[x,,...,Xp].
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Setting: Noisy Data

Let X = {X;,...,Xs} € R" be a data set and f € R[x,,.

Definition (Evaluation)

The evaluation of f over X is defined as evalx(f) := (f(x1), ..., f(Xs))".

., Xnl.
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Setting: Noisy Data

Let X = {X;,...,Xs} C R" be a datasetand f € R[x,,...,Xp].
Definition (Evaluation)
The evaluation of f over X is defined as evalx(f) := (f(x1), ..., f(Xs))".

Definition (Root Mean Square Error)
Define the root mean square error of f over X as

rmse(f, X) := /1]l evalx(f)|13.
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Setting: Noisy Data

Let X = {X;,...,Xs} C R" be a datasetand f € R[x,,...,Xp].
Definition (Evaluation)
The evaluation of f over X is defined as evalx(f) := (f(x1), ..., f(Xs))".

Definition (Root Mean Square Error)
Define the root mean square error of f over X as

rmse(f, X) := /1]l evalx(f)|13.

Definition (-Approximate Vanishing Ideal)

Anideal G C R[x,,...,Xpn] is y-approximately vanishing if G is generated
by a set of unitary polynomials f;, .. ., fr of G that satisfy rmse(f;, X) < v.
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Problem Setting

Problem Setting
Given a dataset X = {X;,...,Xs} € [-1,1]" and ¥ > 0, construct a set of
unitary polynomials, G, such that

® G generates a y-approximately vanishing ideal,

* any y-approximately vanishing polynomial g € R[x,, ..., Xp] iS
contained in (G)r(x,,...x,]-
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How Do We Construct G?

Definition (Border)

Let O C R[Xs,...,Xn] be a set of monomials. A monomial

t e R[Xy,...,Xn] \ O is a border term of O if all divisors of t are in O.
The set of all degree d border terms of O is denoted by 90¢.
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Let O C R[Xs,...,Xn] be a set of monomials. A monomial

t € R[Xy,...,Xp] \ O is a border term of O if all divisors of t are in O
The set of all degree d border terms of O is denoted by 90¢.

E.g.: For O = {1, X3, Xo, x3,x1x2,x§,x§}, we have
003 = {X1X3, X3, X2X3, X2X2, X3}. Note that x2x, ¢ 007,
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Definition (Border)

Let O C R[Xs,...,Xn] be a set of monomials. A monomial

t € R[Xs,...,Xn] \ O is a border term of O if all divisors of t are in O.
The set of all degree d border terms of O is denoted by 90¢.

E.g.: For O = {1, X3, Xo, x3,x1x2,x§,x§}, we have
003 = {X1X3, X3, X2X3, X2X2, X3}. Note that x2x, ¢ 007,

w-Approximately Vanishing Polynomial Oracle (AVPO)

Input: A data set X € R" and a set of unitary monomials O.

Output: If a unitary y-approximately vanishing polynomial g with
terms only in O exists, returns g. Else, returns any unitary polynomial
with terms only in O.
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How Do We Construct G?

Definition (Border)

Let O C R[Xs,...,Xn] be a set of monomials. A monomial
t € R[Xs,...,Xn] \ O is a border term of O if all divisors of t are in O.
The set of all degree d border terms of O is denoted by 90¢.

E.g.: For O = {1, X, X2, X3, X1X2, X3, X3 }, we have
003 = {X1X3, X3, X2X3, X2X2, X3}. Note that x2x, ¢ 007,

w-Approximately Vanishing Polynomial Oracle (AVPO)

Input: A data set X € R" and a set of unitary monomials O.

Output: If a unitary y-approximately vanishing polynomial g with
terms only in O exists, returns g. Else, returns any unitary polynomial
with terms only in O.

A call to this oracle is denoted by AVPO(X, O).
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Algorithm Approximate Vanishing Ideal Algorithm Template [4]

Input: AsetX = {xi,...,Xs} € [-1,1]"and ¢ > 0.

Output: A set of unitary polynomials G that generates a y-approximate van-
ishing ideal of X.

1:de1
2: O « {1}
3: G0
4 while 909 # 0 do
55 L dod
6: forteldo
7: g — AVPO(X,0 U {t})
8: if rmse(g, X) < ¢ then
9: G—GuU{g}
10: else
1: O« Ou({t}
12: end if

13:  end for
1 de—d+1
15: end while
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Theoretical Guarantees: AVI

AVPO

e Singular Value Decomposition for AVI.

Elias S. Wirth - Learning With Conditional Gradients 7116



Theoretical Guarantees: AVI

AVPO

e Singular Value Decomposition for AVI.

Result AVI

Maximality of G

Applicable to non-homogeneous relations
Correct leading term

Generalization bounds

Sparse polynomials
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Algorithm Approximate Vanishing Ideal Algorithm[s]

Input: AsetX = {xi,...,Xs} € [-1,1]"and ¢ > 0.

Output: A set of unitary polynomials G that generates a y-approximate van-
ishing ideal of X.

1:de1
2: O « {1}
3: G0
4 while 909 # 0 do
55 L dod
6: forteldo
7: g — AVPO(X,0 U {t})
8: if rmse(g, X) < ¢ then
9: G—GuU{g}
10: else
1: O« Ou({t}
12: end if

13:  end for
1 ded+1
15: end while
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Replacing the Singular Value Decomposition
Step of Interest

g — AVPO(X,0 U {t})
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Replacing the Singular Value Decomposition
Step of Interest

g — AVPO(X,0 U {t})

Recall: y-Approximately Vanishing Polynomial Oracle (AVPO)

Input: A data set X € R" and a set of unitary monomials O.

Output: If a unitary y-approximately vanishing polynomial g with
terms only in O exists, returns g. Else, returns any unitary polynomial
with terms only in O.

Notation

e Denote the evaluation matrix of O by A.
e Lety := evalx(?).
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Conditional Gradient Approximate Vanishing ldeal
Algorithm (CGAVI)

Observation

e A unitary y-approximately vanishing polynomial exists iff

1
min +/—=||AX = y|? < v.
min [ 2Ax-yI3 <u
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Conditional Gradient Approximate Vanishing ldeal
Algorithm (CGAVI)

Observation

e A unitary y-approximately vanishing polynomial exists iff

1
min +/—=||AX = y|? < v.
xeRIOI‘/S” yll3 <y

Adaptation

e Limit size of feasibility region to bound leading term coefficient.
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Algorithm (CGAVI)

Observation

e A unitary y-approximately vanishing polynomial exists iff

1
min +/—=||AX = y|? < v.
xeRIOIwS” yll3 <y

Adaptation

e Limit size of feasibility region to bound leading term coefficient.
e Least Squares loss (smooth, (strongly) convex).
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Conditional Gradient Approximate Vanishing ldeal
Algorithm (CGAVI)

Observation

e A unitary y-approximately vanishing polynomial exists iff

1
min +/—=||AX = y|? < v.
xeRIOIwS” yll3 <y

Adaptation

e Limit size of feasibility region to bound leading term coefficient.
e Least Squares loss (smooth, (strongly) convex).
e We thus solve

1
min[1Ax -y

such that ||x||; < D.
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Theoretical Guarantees: AVI vs. CGAVI

AVPO

e Singular Value Decomposition for AVI
 Conditional Gradients a.k.a. Frank-Wolfe [2, 5] for CGAVI.

Result AVl  CGAVI

Maximality of G

Applicable to non-homogeneous relations @
Correct leading term °
Generalization bounds °
Sparse polynomials [

Elias S. Wirth - Learning With Conditional Gradients 1/16



Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

e Homogeneous problem setup
e Feature extraction for classification
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Conditional Gradient Learner Algorithm (CGL)

e Non-homogeneous problem setup
* (Feature extraction for) regression
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Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

e Homogeneous problem setup
e Feature extraction for classification

Conditional Gradient Learner Algorithm (CGL)
e Non-homogeneous problem setup

* (Feature extraction for) regression

Conditional Gradient Identification Of Equations From Data Algorithm
(CGIED)

e Combination of CGAVI + CGL for regression tasks
* Sparse Identification of Nonlinear Dynamics Algorithm (SINDy) [1]
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Experiments 1

Table: Results 1. For cancer and fashion, the evaluation metric is test set

classification error in percent and for mpg, the evaluation metric is test set

root mean square error.

algorithm cancer fashion mpg
CGAVI + SVM  1.678 2160 o
CGIED = = 2.772
AVI + SVM 2168 2.258 >
CNN = 1.735 i
DNN = = 3.048
SVM 4.649  2.260 -
SVR = . 2.577
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Experiments 2

Table: Results 2. Results for the noisy Fermi-Pasta-Ulam-Tsingou problem [3].

terms/runs actual 1 2 3

x3 0700 0541 0.566 0.557
XjX; 2100 -2.013 -1.957 -1.992
X:X3 2100 1997 1921 2.006

X3 -1.400 -1.074 -1115 -1112
X3X3 2100 2.003 1936 1.992
XoX3 2100 -1.996 -1.918 -1.993

X; 0700 0.567 0.551 0.549

X; 1000 1105 1107  1.08

X, -2.000 -2.207 -2.215 -2.192

X3 1000 1.082 111 1.096
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