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Non-Noisy Data [6]
Setup
Let X = {x1, . . . , xs} ⊆ Rn be a data set. Consider the ideal

G := {g ∈ R[x1, . . . , xn] | g(x) = 0 for all x ∈ X}.

Multiclass Classi�cation
• Data set X = {x1, . . . , xs} ⊆ Rn and labels
Y = (y1, . . . , ys)T ⊆ {1, . . . , k}s

• Let G =
⋃k
i=1 Gi = {g1, . . . , gt}.

G(X) :=


— G(x1) —

...

— G(xs) —

 =

g1(x1) g2(x1) . . . gt(x1)
...

...
...

g1(xs) g2(xs) . . . gt(xs)

 ∈ Mats,t(R).

• Train a classi�er on G(X) and Y.
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Setting: Noisy Data

Let X = {x1, . . . , xs} ⊆ Rn be a data set and f ∈ R[x1, . . . , xn].

De�nition (Evaluation)
The evaluation of f over X is de�ned as evalX(f ) := (f (x1), . . . , f (xs))T .

De�nition (Root Mean Square Error)
De�ne the root mean square error of f over X as
rmse(f, X) :=

√
1
s ‖ evalX(f )‖

2
2 .

De�nition (ψ-Approximate Vanishing Ideal)
An ideal G ⊆ R[x1, . . . , xn] is ψ-approximately vanishing if G is generated
by a set of unitary polynomials f1, . . . , fk of G that satisfy rmse(fi, X) ≤ ψ.
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Problem Setting

Problem Setting
Given a data set X = {x1, . . . , xs} ⊆ [−1, 1]n and ψ > 0, construct a set of
unitary polynomials, G, such that
• G generates a ψ-approximately vanishing ideal,
• any ψ-approximately vanishing polynomial g ∈ R[x1, . . . , xn] is

contained in 〈G〉R[x1,...,xn].
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How Do We Construct G?
De�nition (Border)
Let O ⊆ R[x1, . . . , xn] be a set of monomials. A monomial
t ∈ R[x1, . . . , xn] \ O is a border term of O if all divisors of t are in O.
The set of all degree d border terms of O is denoted by ∂Od.

E.g.: For O = {1, x1, x2, x3, x1x2, x2
2, x2

3}, we have
∂O3 = {x1x2

2, x
3
2, x2

2x3, x2x2
3, x

3
3}. Note that x2

1x2 < ∂O
d.

ψ-Approximately Vanishing Polynomial Oracle (AVPO)
Input: A data set X ⊆ Rn and a set of unitary monomials O.
Output: If a unitary ψ-approximately vanishing polynomial g with
terms only in O exists, returns g. Else, returns any unitary polynomial
with terms only in O.

A call to this oracle is denoted by AVPO(X,O).
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Algorithm Approximate Vanishing Ideal Algorithm Template [4]
Input: A set X = {x1, . . . , xs} ⊆ [−1, 1]n and ψ > 0.
Output: A set of unitary polynomials G that generates a ψ-approximate van-

ishing ideal of X.
1: d← 1
2: O ← {1}
3: G← ∅
4: while ∂Od , ∅ do
5: L← ∂Od

6: for t ∈ L do
7: g← AVPO(X,O ∪ {t})
8: if rmse(g, X) ≤ ψ then
9: G← G ∪ {g}

10: else
11: O ← O ∪ {t}
12: end if
13: end for
14: d← d + 1
15: end while
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Theoretical Guarantees: AVI

AVPO
• Singular Value Decomposition for AVI.

•

Result AVI CGAVI

Maximality of G
Applicable to non-homogeneous relations
Correct leading term
Generalization bounds
Sparse polynomials

Elias S. Wirth · Learning With Conditional Gradients 7 / 16



Theoretical Guarantees: AVI

AVPO
• Singular Value Decomposition for AVI.

•

Result AVI

CGAVI

Maximality of G
Applicable to non-homogeneous relations
Correct leading term
Generalization bounds
Sparse polynomials

Elias S. Wirth · Learning With Conditional Gradients 7 / 16



Algorithm Approximate Vanishing Ideal Algorithm[4]
Input: A set X = {x1, . . . , xs} ⊆ [−1, 1]n and ψ > 0.
Output: A set of unitary polynomials G that generates a ψ-approximate van-

ishing ideal of X.
1: d← 1
2: O ← {1}
3: G← ∅
4: while ∂Od , ∅ do
5: L← ∂Od

6: for t ∈ L do
7: g← AVPO(X,O ∪ {t})
8: if rmse(g, X) ≤ ψ then
9: G← G ∪ {g}

10: else
11: O ← O ∪ {t}
12: end if
13: end for
14: d← d + 1
15: end while

Elias S. Wirth · Learning With Conditional Gradients 8 / 16



Replacing the Singular Value Decomposition
Step of Interest

g← AVPO(X,O ∪ {t})

Recall: ψ-Approximately Vanishing Polynomial Oracle (AVPO)
Input: A data set X ⊆ Rn and a set of unitary monomials O.
Output: If a unitary ψ-approximately vanishing polynomial g with
terms only in O exists, returns g. Else, returns any unitary polynomial
with terms only in O.

Notation
• Denote the evaluation matrix of O by A.
• Let y := evalX(t).
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Conditional Gradient Approximate Vanishing Ideal
Algorithm (CGAVI)
Observation
• A unitary ψ-approximately vanishing polynomial exists i�

min
x∈R|O|

√
1
s
‖Ax − y‖22 ≤ ψ.

Adaptation

• Limit size of feasibility region to bound leading term coe�cient.
• Least Squares loss (smooth, (strongly) convex).
• We thus solve

min
1
s
‖Ax − y‖22,

such that ‖x‖1 ≤ D.
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Theoretical Guarantees: AVI vs. CGAVI

AVPO
• Singular Value Decomposition for AVI
• Conditional Gradients a.k.a. Frank-Wolfe [2, 5] for CGAVI.

Result AVI CGAVI

Maximality of G
Applicable to non-homogeneous relations
Correct leading term
Generalization bounds
Sparse polynomials
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Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

• Homogeneous problem setup
• Feature extraction for classi�cation

Conditional Gradient Learner Algorithm (CGL)

• Non-homogeneous problem setup
• (Feature extraction for) regression

Conditional Gradient Identi�cation Of Equations From Data Algorithm
(CGIED)

• Combination of CGAVI + CGL for regression tasks
• Sparse Identi�cation of Nonlinear Dynamics Algorithm (SINDy) [1]
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Experiments 1

Table: Results 1. For cancer and fashion, the evaluation metric is test set
classi�cation error in percent and for mpg, the evaluation metric is test set
root mean square error.

algorithm cancer fashion mpg

CGAVI + SVM 1.678 2.160 –
CGIED – – 2.772

AVI + SVM 2.168 2.258 –
CNN – 1.735 –
DNN – – 3.048
SVM 4.649 2.260 –
SVR – – 2.577
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Experiments 2

Table: Results 2. Results for the noisy Fermi-Pasta-Ulam-Tsingou problem [3].

terms/runs actual 1 2 3

x3
1 0.700 0.541 0.566 0.557

x2
1x2 -2.100 -2.013 -1.957 -1.992
x1x2

2 2.100 1.997 1.921 2.006
x3

2 -1.400 -1.074 -1.115 -1.112
x2

2x3 2.100 2.003 1.936 1.992
x2x2

3 -2.100 -1.996 -1.918 -1.993
x3

3 0.700 0.567 0.551 0.549
x1 1.000 1.105 1.107 1.08
x2 -2.000 -2.207 -2.215 -2.192
x3 1.000 1.082 1.11 1.096
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