Learning Relations From Data With Conditional Gradients

El<mark>ias S. Wirth</mark>

Technische Universität Berlin and Zuse Institute Berlin

wirth@zib.de

ZIB Meeting · November 19, 2020

Importance of Feature Extraction

Elias S. Wirth · Learning With Conditional Gradients

Setup

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set. Consider the ideal

 $G := \{g \in \mathbb{R}[x_1, \dots, x_n] \mid g(x) = 0 \text{ for all } x \in X\}.$

Elias S. Wirth · Learning With Conditional Gradients

Setup

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set. Consider the ideal

 $G := \{g \in \mathbb{R}[x_1, \dots, x_n] \mid g(x) = 0 \text{ for all } x \in X\}.$

Multiclass Classification

• Data set $X = \{x_1, \dots, x_s\} \subseteq \mathbb{R}^n$ and labels $Y = (y_1, \dots, y_s)^T \subseteq \{1, \dots, k\}^s$

Setup

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set. Consider the ideal

 $G := \{g \in \mathbb{R}[x_1, \dots, x_n] \mid g(x) = 0 \text{ for all } x \in X\}.$

Multiclass Classification

- Data set $X = \{x_1, \dots, x_s\} \subseteq \mathbb{R}^n$ and labels $Y = (y_1, \dots, y_s)^T \subseteq \{1, \dots, k\}^s$
- Let $G = \bigcup_{i=1}^{k} G_i = \{g_1, \ldots, g_t\}.$

Setup

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set. Consider the ideal

 $G := \{g \in \mathbb{R}[x_1, \dots, x_n] \mid g(x) = 0 \text{ for all } x \in X\}.$

Multiclass Classification

• Data set $X = \{x_1, \dots, x_s\} \subseteq \mathbb{R}^n$ and labels $Y = (y_1, \dots, y_s)^T \subseteq \{1, \dots, k\}^s$

• Let
$$G = \bigcup_{i=1}^{R} G_i = \{g_1, \dots, g_t\}$$

$$G(X) := \begin{bmatrix} - & G(x_1) & - \\ & \vdots & \\ - & G(x_5) & - \end{bmatrix} = \begin{bmatrix} g_1(x_1) & g_2(x_1) & \dots & g_t(x_1) \\ \vdots & \vdots & & \vdots \\ g_1(x_5) & g_2(x_5) & \dots & g_t(x_5) \end{bmatrix} \in \operatorname{Mat}_{s,t}(\mathbb{R}).$$

Setup

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set. Consider the ideal

 $G := \{g \in \mathbb{R}[x_1, \dots, x_n] \mid g(x) = 0 \text{ for all } x \in X\}.$

Multiclass Classification

• Data set $X = \{x_1, \dots, x_s\} \subseteq \mathbb{R}^n$ and labels $Y = (y_1, \dots, y_s)^T \subseteq \{1, \dots, k\}^s$

• Let
$$G = \bigcup_{i=1}^{R} G_i = \{g_1, \dots, g_t\}$$

$$G(X) := \begin{bmatrix} - & G(x_1) & - \\ & \vdots & \\ - & G(x_5) & - \end{bmatrix} = \begin{bmatrix} g_1(x_1) & g_2(x_1) & \dots & g_t(x_1) \\ \vdots & \vdots & & \vdots \\ g_1(x_5) & g_2(x_5) & \dots & g_t(x_5) \end{bmatrix} \in \operatorname{Mat}_{s,t}(\mathbb{R}).$$

Train a classifieria on WG(X) and WM Conditional Gradients

Elias S. Wirth · Learning With Conditional Gradients

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set and $f \in \mathbb{R}[x_1, \ldots, x_n]$.

Elias S. Wirth · Learning With Conditional Gradients

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set and $f \in \mathbb{R}[x_1, \ldots, x_n]$.

Definition (Evaluation)

The evaluation of f over X is defined as $e_{val_X}(f) := (f(x_1), \dots, f(x_s))^T$.

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set and $f \in \mathbb{R}[x_1, \ldots, x_n]$.

Definition (Evaluation)

The evaluation of f over X is defined as $e_{val_X}(f) := (f(x_1), \dots, f(x_s))^T$.

Definition (Root Mean Square Error) Define the root mean square error of f over X as rmse $(f, X) := \sqrt{\frac{1}{s} \| \operatorname{eval}_X(f) \|_2^2}$.

Let $X = \{x_1, \ldots, x_s\} \subseteq \mathbb{R}^n$ be a data set and $f \in \mathbb{R}[x_1, \ldots, x_n]$.

Definition (Evaluation)

The evaluation of f over X is defined as $e_{val_X}(f) := (f(x_1), \dots, f(x_s))^T$.

Definition (Root Mean Square Error) Define the root mean square error of f over X as rmse $(f, X) := \sqrt{\frac{1}{s} \| \operatorname{eval}_X(f) \|_2^2}$.

Definition (ψ -Approximate Vanishing Ideal)

An ideal $G \subseteq \mathbb{R}[x_1, ..., x_n]$ is ψ -approximately vanishing if G is generated by a set of unitary polynomials $f_1, ..., f_k$ of G that satisfy $\operatorname{rmse}(f_i, X) \leq \psi$.

Problem Setting

Problem Setting

Given a data set $X = \{x_1, \dots, x_s\} \subseteq [-1, 1]^n$ and $\psi > 0$, construct a set of unitary polynomials, *G*, such that

- G generates a ψ -approximately vanishing ideal,
- any ψ -approximately vanishing polynomial $g \in \mathbb{R}[x_1, \dots, x_n]$ is contained in $\langle G \rangle_{\mathbb{R}[x_1, \dots, x_n]}$.

Definition (Border)

Let $O \subseteq \mathbb{R}[x_1, ..., x_n]$ be a set of monomials. A monomial $t \in \mathbb{R}[x_1, ..., x_n] \setminus O$ is a border term of O if all divisors of t are in O. The set of all degree d border terms of O is denoted by ∂O^d .

Definition (Border)

Let $O \subseteq \mathbb{R}[x_1, ..., x_n]$ be a set of monomials. A monomial $t \in \mathbb{R}[x_1, ..., x_n] \setminus O$ is a border term of O if all divisors of t are in O. The set of all degree d border terms of O is denoted by ∂O^d .

E.g.: For $O = \{1, x_1, x_2, x_3, x_1x_2, x_2^2, x_3^2\}$, we have $\partial O^3 = \{x_1x_2^2, x_2^3, x_2^2x_3, x_2x_3^2, x_3^3\}$. Note that $x_1^2x_2 \notin \partial O^d$.

Definition (Border)

Let $O \subseteq \mathbb{R}[x_1, ..., x_n]$ be a set of monomials. A monomial $t \in \mathbb{R}[x_1, ..., x_n] \setminus O$ is a border term of O if all divisors of t are in O. The set of all degree d border terms of O is denoted by ∂O^d .

E.g.: For $O = \{1, x_1, x_2, x_3, x_1x_2, x_2^2, x_3^2\}$, we have $\partial O^3 = \{x_1x_2^2, x_2^3, x_2^2x_3, x_2x_3^2, x_3^3\}$. Note that $x_1^2x_2 \notin \partial O^d$.

ψ -Approximately Vanishing Polynomial Oracle (AVPO)

Input: A data set $X \subseteq \mathbb{R}^n$ and a set of unitary monomials O. **Output:** If a unitary ψ -approximately vanishing polynomial g with terms only in O exists, returns g. Else, returns any unitary polynomial with terms only in O.

Definition (Border)

Let $O \subseteq \mathbb{R}[x_1, ..., x_n]$ be a set of monomials. A monomial $t \in \mathbb{R}[x_1, ..., x_n] \setminus O$ is a border term of O if all divisors of t are in O. The set of all degree d border terms of O is denoted by ∂O^d .

E.g.: For $O = \{1, x_1, x_2, x_3, x_1x_2, x_2^2, x_3^2\}$, we have $\partial O^3 = \{x_1x_2^2, x_2^3, x_2^2x_3, x_2x_3^2, x_3^3\}$. Note that $x_1^2x_2 \notin \partial O^d$.

ψ -Approximately Vanishing Polynomial Oracle (AVPO)

Input: A data set $X \subseteq \mathbb{R}^n$ and a set of unitary monomials *O*. **Output:** If a unitary ψ -approximately vanishing polynomial *g* with terms only in *O* exists, returns *g*. Else, returns any unitary polynomial with terms only in *O*.

A call to this oracle is denoted by AVPO(X, O).

Algorithm Approximate Vanishing Ideal Algorithm Template [4]

Input: A set $X = \{x_1, \dots, x_s\} \subseteq [-1, 1]^n$ and $\psi > 0$.

Output: A set of unitary polynomials G that generates a ψ -approximate vanishing ideal of X.

- 1: *d* ← 1
- 2: *O* ← {1}
- 3: $G ← \emptyset$
- 4: while $\partial O^d \neq \emptyset$ do
- 5: $L \leftarrow \partial O^d$
- 6: **for** $t \in L$ **do**
- 7: $g \leftarrow AVPO(X, O \cup \{t\})$
- 8: **if** $\operatorname{rmse}(g, X) \leq \psi$ **then**
- 9: $G \leftarrow G \cup \{g\}$
- 10: else
- $11: \quad O \leftarrow O \cup \{t\}$
- 12: end if
- 13: end for
- 14: $d \leftarrow d + 1$
- 15: end while

Theoretical Guarantees: AVI

AVPO

• Singular Value Decomposition for AVI.

Theoretical Guarantees: AVI

AVPO

• Singular Value Decomposition for AVI.

Result	AVI
Maximality of G	•
Applicable to non-homogeneous relations	•
Correct leading term	•
Generalization bounds	•
Sparse polynomials	•

Algorithm Approximate Vanishing Ideal Algorithm[4]

Input: A set $X = \{x_1, ..., x_s\} \subseteq [-1, 1]^n$ and $\psi > 0$. **Output:** A set of unitary polynomials G that generates a ψ -approximate vanishing ideal of X. 1: $d \leftarrow 1$ 2: $O \leftarrow \{1\}$ 3: $G \leftarrow \emptyset$ 4: while $\partial O^d \neq \emptyset$ do $L \leftarrow \partial O^d$ 5: for $t \in L$ do 6: $g \leftarrow AVPO(X, O \cup \{t\})$ 7: if $rmse(q, X) \le \psi$ then 8: $G \leftarrow G \cup \{q\}$ 9: else 10: 11: $0 \leftarrow O \cup \{t\}$ end if 12: end for 13: $d \leftarrow d + 1$ 14: 15: end while

Replacing the Singular Value Decomposition Step of Interest

 $g \leftarrow \mathsf{AVPO}(X, O \cup \{t\})$

Elias S. Wirth · Learning With Conditional Gradients

Replacing the Singular Value Decomposition Step of Interest

 $g \leftarrow \mathsf{AVPO}(X, O \cup \{t\})$

Recall: ψ -Approximately Vanishing Polynomial Oracle (AVPO) **Input:** A data set $X \subseteq \mathbb{R}^n$ and a set of unitary monomials O. **Output:** If a unitary ψ -approximately vanishing polynomial g with terms only in O exists, returns g. Else, returns any unitary polynomial with terms only in O.

Replacing the Singular Value Decomposition Step of Interest

 $g \leftarrow \mathsf{AVPO}(X, O \cup \{t\})$

Recall: ψ -Approximately Vanishing Polynomial Oracle (AVPO) **Input:** A data set $X \subseteq \mathbb{R}^n$ and a set of unitary monomials O. **Output:** If a unitary ψ -approximately vanishing polynomial g with terms only in O exists, returns g. Else, returns any unitary polynomial with terms only in O.

Notation

- Denote the evaluation matrix of *O* by *A*.
- Let $y := eval_X(t)$.

Observation

• A unitary ψ -approximately vanishing polynomial exists iff

$$\min_{\mathbf{x}\in\mathbb{R}^{|O|}}\sqrt{\frac{1}{s}\|A\mathbf{x}-\mathbf{y}\|_2^2}\leq\psi.$$

Observation

• A unitary ψ -approximately vanishing polynomial exists iff

$$\min_{\boldsymbol{x}\in\mathbb{R}^{|\boldsymbol{O}|}} \sqrt{\frac{1}{s} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2} \leq \psi.$$

Adaptation

Limit size of feasibility region to bound leading term coefficient.

Observation

• A unitary ψ -approximately vanishing polynomial exists iff

$$\min_{\boldsymbol{x}\in\mathbb{R}^{|\boldsymbol{O}|}} \sqrt{\frac{1}{s} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2} \leq \psi.$$

Adaptation

- Limit size of feasibility region to bound leading term coefficient.
- Least Squares loss (smooth, (strongly) convex).

Observation

• A unitary ψ -approximately vanishing polynomial exists iff

$$\min_{x\in\mathbb{R}^{|O|}}\sqrt{\frac{1}{s}\|Ax-y\|_2^2}\leq\psi.$$

Adaptation

- Limit size of feasibility region to bound leading term coefficient.
- Least Squares loss (smooth, (strongly) convex).
- We thus solve

$$\min \frac{1}{s} ||Ax - y||_{2}^{2},$$

such that $||x||_{1} \le D.$

Elias S. Wirth · Learning With Conditional Gradients

Theoretical Guarantees: AVI vs. CGAVI

AVPO

- Singular Value Decomposition for AVI
- Conditional Gradients a.k.a. Frank-Wolfe [2, 5] for CGAVI.

Result	AVI	CGAVI
Maximality of G	•	•
Applicable to non-homogeneous relations	•	•
Correct leading term	•	•
Generalization bounds	•	•
Sparse polynomials	•	•

Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

- Homogeneous problem setup
- Feature extraction for classification

Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

- Homogeneous problem setup
- Feature extraction for classification

Conditional Gradient Learner Algorithm (CGL)

- Non-homogeneous problem setup
- (Feature extraction for) regression

Conditional Gradient Algorithms

Conditional Gradients Approximate Vanishing Ideal Algorithm (CGAVI)

- Homogeneous problem setup
- Feature extraction for classification

Conditional Gradient Learner Algorithm (CGL)

- Non-homogeneous problem setup
- (Feature extraction for) regression

Conditional Gradient Identification Of Equations From Data Algorithm (CGIED)

- Combination of CGAVI + CGL for regression tasks
- Sparse Identification of Nonlinear Dynamics Algorithm (SINDy) [1]

Experiments 1

Table: Results 1. For cancer and fashion, the evaluation metric is test set classification error in percent and for mpg, the evaluation metric is test set root mean square error.

algorithm	<mark>cance</mark> r	fashion	mpg
CGAVI + SVM	1.678	2.160	-
CGIED	-	-	2.772
AVI + SVM	2.168	2.258	-
CNN	-	1.735	-
DNN		-	3.048
SVM	<mark>4.64</mark> 9	2.260	-
<mark>SV</mark> R	-		2. 577

Experiments 2

Table: Results 2. Results for the noisy Fermi-Pasta-Ulam-Tsingou problem [3].

terms/runs	actual	1	2	3
x ₁ ³	0.7 <mark>00</mark>	0.541	0.566	0.557
$X_{1}^{2}X_{2}$	-2.100	-2.013	-1.957	-1.992
$X_1 X_2^2$	2.100	1.9 <mark>97</mark>	1.921	2.00 <mark>6</mark>
x ³ ₂	-1.400	-1.074	-1.115	-1.112
$X_{2}^{2}X_{3}$	2.1 <mark>00</mark>	2.003	1.93 <mark>6</mark>	1.992
$X_2 X_3^2$	-2.100	-1.9 <mark>96</mark>	-1.918	-1.99 <mark>3</mark>
$X_2 X_3^2 X_3^2 X_3^2$	0.700	0.567	0.551	0.54 <mark>9</mark>
<i>X</i> ₁	1.000	1.105	1.107	1.08
X ₂	-2.000	-2.207	-2.215	-2.19 <mark>2</mark>
X ₃	1.000	1.0 <mark>82</mark>	1.11	1.09 <mark>6</mark>

References I

- S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15):3932–3937, 2016.
- M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):95–110, 1956.
- P. Gelß, S. Klus, J. Eisert, and C. Schütte. Multidimensional approximation of nonlinear dynamical systems. Journal of Computational and Nonlinear Dynamics, 14(6), 2019.
- D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse.
 Approximate computation of zero-dimensional polynomial ideals.
 Journal of Symbolic Computation, 44(11):1566–1591, 2009.

References II

 E. S. Levitin and B. T. Polyak.
 Constrained minimization methods.
 <u>USSR Computational mathematics and mathematical physics</u>, 6(5):1–50, 1966.

 H. M. Möller and B. Buchberger.
 The construction of multivariate polynomials with preassigned zeros.
 In European Computer Algebra Conference, pages 24–31. Springer,

1982.