Frank-Wolfe with New and Practical Descent Directions

Cyrille W. Combettes

School of Industrial and Systems Engineering Georgia Institute of Technology

IOL & COGA Research Seminar Zuse Institute Berlin and TU Berlin October 27, 2020

- **2** The Frank-Wolfe algorithm
- **3** Boosting Frank-Wolfe for convex minimization
- 4 Adaptive Frank-Wolfe for large-scale optimization

Consider

min
$$f(x)$$

s.t. $x \in C$

where

- $\mathcal{C} \subset \mathbb{R}^n$ is a compact convex set
- $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth convex function

Consider

min
$$f(x)$$

s.t. $x \in C$

where

- $\mathcal{C} \subset \mathbb{R}^n$ is a compact convex set
- $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth convex function

Example

Sparse logistic regression

• Low-rank matrix completion

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i \langle a_i, x \rangle))$$
s.t. $\|x\|_1 \leqslant \tau$

$$\min_{X \in \mathbb{R}^{m \times n}} \frac{1}{2|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} (Y_{i,j} - X_{i,j})^2$$

s.t. $\|X\|_{\text{nuc}} \leq \tau$

• A natural approach is to use any efficient method and add projections back onto C to ensure feasibility

• A natural approach is to use any efficient method and add projections back onto C to ensure feasibility

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

- A natural approach is to use any efficient method and add projections back onto ${\cal C}$ to ensure feasibility
- However, in many situations projections onto ${\mathcal C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nonzeros)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} -ball, $p \in]1,\infty[\setminus\{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nonzeros)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_p -ball, $p \in]1, \infty[\setminus \{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nonzeros)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n\ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto C to ensure feasibility
- However, in many situations projections onto $\mathcal C$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
$\ell_{p} ext{-ball}, \ p\in]1,\infty[ackslash\{2\}$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nonzeros)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

- A natural approach is to use any efficient method and add projections back onto ${\cal C}$ to ensure feasibility
- However, in many situations projections onto ${\mathcal C}$ are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of C: linear minimizations over C can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_1/\ell_2/\ell_\infty$ -ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_p -ball, $p \in]1, \infty[\setminus \{2\}]$	$\mathcal{O}(n)$	N/A
Nuclear norm-ball	$\mathcal{O}(nonzeros)$	$\mathcal{O}(mn\min\{m,n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}(n^{3.5})$
Birkhoff polytope	$\mathcal{O}(n^3)$	N/A
Matroid polytope	$\mathcal{O}(n \ln(n))$	$\mathcal{O}(poly(n))$

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1:for t = 0 to T - 1 do2: $v_t \leftarrow \underset{v \in C}{\operatorname{arg min}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

• x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW) **Input:** $x_0 \in C$, $\gamma_t \in [0, 1]$. 1: for t = 0 to T - 1 do 2: $v_t \leftarrow \arg\min\langle \nabla f(x_t), v \rangle$ 3:

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections
- FW = pick a vertex (using gradient information) and move in that direction

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin & Polyak, 1966):

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min(\nabla f(x_t), v)$ $v \in C$

3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

- x_{t+1} is obtained by convex combination of $x_t \in C$ and $v_t \in C$, thus $x_{t+1} \in C$
- FW uses linear minimizations (the "FW oracle") instead of projections
- FW = pick a vertex (using gradient information) and move in that direction
- Successfully applied to: traffic assignment, computer vision, optimal transport, adversarial learning, etc.

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth convex function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min\left\{\frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L \|x_t - v_t\|^2}, 1\right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth convex function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min\left\{\frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L \|x_t - v_t\|^2}, 1\right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi, 2013; Lan, 2013)

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth convex function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. If $\gamma_t = \frac{2}{t+2}$ (default) or $\gamma_t = \min\left\{\frac{\langle \nabla f(x_t), x_t - v_t \rangle}{L || x_t - v_t ||^2}, 1\right\}$ ("short step"), then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{4LD^2}{t+2}$$

- The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi, 2013; Lan, 2013)
- Why?

Consider the simple problem

$$\min \frac{1}{2} \|x\|_2^2$$
 s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$

and
$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Consider the simple problem

$$\begin{split} &\min \frac{1}{2} \|x\|_2^2 \\ &\text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \end{split}$$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\begin{array}{l} \min \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \\ \text{and } x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{array}$

x1

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\min \frac{1}{2} \|x\|_{2}^{2}$ s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\begin{array}{l} \min \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \\ \text{and } x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{array}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consider the simple problem

 $\min \frac{1}{2} \|x\|_2^2$ s.t. $x \in \operatorname{conv}\left(\begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$ and $x^* = \begin{pmatrix}0\\0\end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
The Frank-Wolfe algorithm

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• FW tries to reach x* by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

 $\begin{array}{l} \min \, \frac{1}{2} \|x\|_2^2 \\ \text{s.t. } x \in \operatorname{conv} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \end{array}$

and $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

• Let
$$x_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- FW tries to reach x^* by moving towards vertices
- This yields an inefficient zig-zagging trajectory

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

 Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber & Meshi, 2016): memory-free variant of AFW

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber & Meshi, 2016): memory-free variant of AFW
- Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW and FW

• Can we speed up FW in a simple way?

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):

• Speed up FW by moving in a direction better aligned with $-\nabla f(x_t)$

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):

- Speed up FW by moving in a direction better aligned with $-\nabla f(x_t)$
- Build this direction by using ${\mathcal C}$ to maintain the projection-free property

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

• $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈C} ⟨r₂, v⟩

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈C} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈C} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈C} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

The boosted direction g_t is better aligned with −∇f(x_t) than is the FW direction v₀ − x_t

 How can we build a direction better aligned with −∇f(x_t) and that allows to update x_{t+1} without projection?

•
$$v_0 \in \arg \max_{v \in C} \langle -\nabla f(x_t), v \rangle$$

 $\lambda_0 u_0 = \frac{\langle -\nabla f(x_t), v_0 - x_t \rangle}{\|v_0 - x_t\|^2} (v_0 - x_t)$
 $r_1 = -\nabla f(x_t) - \lambda_0 u_0$

- $v_1 \in \arg \max_{v \in \mathcal{C}} \langle r_1, v \rangle$ $\lambda_1 u_1 = \frac{\langle r_1, v_1 - x_t \rangle}{\|v_1 - x_t\|^2} (v_1 - x_t)$ $r_2 = r_1 - \lambda_1 u_1$
- We could continue:
 v₂ ∈ arg max_{v∈C} ⟨r₂, v⟩
- $d = \lambda_0 u_0 + \lambda_1 u_1$
- $g_t = d/(\lambda_0 + \lambda_1)$

The boosted direction g_t is better aligned with -∇f(x_t) than is the FW direction v₀ - x_t and satisfies [x_t, x_t + g_t] ⊆ C so we can update

$$x_{t+1} = x_t + \gamma_t g_t$$
 for any $\gamma_t \in [0,1]$

Why $[x_t, x_t + g_t] \subseteq C$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) \quad \text{where } \lambda_k > 0 \text{ and } v_k \in \mathcal{C}$$

Why $[x_t, x_t + g_t] \subseteq \mathcal{C}$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t)$$
 where $\lambda_k > 0$ and $v_k \in \mathcal{C}$

so if $\Lambda_t = \sum_{k=0}^{K-1} \lambda_k$, then

$$g_t = \frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) = \underbrace{\left(\frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k v_k\right)}_{\in \mathcal{C}} - x_t$$

Why $[x_t, x_t + g_t] \subseteq C$? Let K_t be the number of alignment rounds. We have

$$d = \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t)$$
 where $\lambda_k > 0$ and $v_k \in \mathcal{C}$

so if $\Lambda_t = \sum_{k=0}^{K-1} \lambda_k$, then

$$g_t = \frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k (v_k - x_t) = \underbrace{\left(\frac{1}{\Lambda_t} \sum_{k=0}^{K_t-1} \lambda_k v_k\right)}_{\in \mathcal{C}} - x_t$$

Thus, $x_t + g_t \in \mathcal{C}$ so $[x_t, x_t + g_t] \subseteq \mathcal{C}$ by convexity

Algorithm Finding a direction *g* well aligned with ∇ from a reference point *z*

Input:
$$z \in C$$
, $\nabla \in \mathbb{R}^n$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.
1: $d_0 \leftarrow 0, \Lambda \leftarrow 0$
2: for $k = 0$ to $K - 1$ do
3: $r_k \leftarrow \nabla - d_k$ $\triangleright k$ -th residual
4: $v_k \leftarrow \arg \max_{v \in C} \langle r_k, v \rangle$ $\triangleright FW$ oracle
5: $u_k \leftarrow \arg \max_{u \in \{v_k - z, -d_k/ \| d_k \|\}} \langle r_k, u \rangle$
6: $\lambda_k \leftarrow \langle r_k, u_k \rangle / \| u_k \|^2$
7: $d'_k \leftarrow d_k + \lambda_k u_k$
8: if $\operatorname{align}(\nabla, d'_k) - \operatorname{align}(\nabla, d_k) \ge \delta$ then
9: $d_{k+1} \leftarrow d'_k$
10: $\Lambda_t \leftarrow \begin{cases} \Lambda + \lambda_k & \text{if } u_k = v_k - z \\ \Lambda(1 - \lambda_k / \| d_k \|) & \text{if } u_k = -d_k / \| d_k \| \end{cases}$
11: else
12: break $\triangleright \text{ exit } k$ -loop
13: $g \leftarrow d_k / \Lambda$ $\triangleright \text{ normalization}$

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Inpι	it: $z \in \mathcal{C}$, $\nabla \in \mathbb{R}^n$, $K \in \mathbb{N} \setminus \{0\}$, δ	\in]0,1[.
1:	$d_0 \leftarrow 0, \ \Lambda \leftarrow 0$	
2:	for $k = 0$ to $K - 1$ do	
3:	$\textit{r}_k \leftarrow abla - \textit{d}_k$	▷ k-th residual
4:	$m{v}_k \leftarrow ext{arg max}_{m{v} \in \mathcal{C}} \langle m{r}_k, m{v} angle$	▷ FW oracle
5:	$u_k \leftarrow \operatorname{argmax}_{u \in \{v_k - z, -d_k / \ d_k\ }$	$\langle \mathbf{r}_k, \mathbf{u} \rangle$
6:	$\lambda_k \leftarrow \langle r_k, u_k \rangle / \ u_k\ ^2$	
7:	$d_k' \leftarrow d_k + \lambda_k u_k$	
8:	$if \; align(\nabla, d_k') - align(\nabla, d_k)$	$\geqslant \delta$ then
9:	$\textit{\textit{d}}_{k+1} \gets \textit{\textit{d}}_{k}'$	
10:	$\int \Lambda + \lambda_k$ i	$u_k = v_k - z$
	$\Lambda_t \leftarrow \left\{ \Lambda(1 - \lambda_k / \ d_k\) \right\}$	$F u_k = -d_k/\ d_k\ $
11:	else	
12:	break	⊳ exit <i>k</i> -loop
13:	$g \leftarrow d_k / \Lambda$	▷ normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Inpu	it: $z \in \mathcal{C}$, $\nabla \in \mathbb{R}^n$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.	
1:	$d_0 \leftarrow 0, \ \Lambda \leftarrow 0$	
2:	for $k = 0$ to $K - 1$ do	
3:	$r_k \leftarrow abla - d_k$	\triangleright <i>k</i> -th residual
4:	$oldsymbol{v}_k \leftarrow {\sf argmax}_{oldsymbol{v}\in\mathcal{C}}\langle oldsymbol{r}_k,oldsymbol{v} angle$	▷ FW oracle
5:	$u_k \leftarrow {\sf argmax}_{u \in \{v_k - z, -d_k / \ d_k\ \}} \langle r_k, u angle$	
6:	$\lambda_k \leftarrow \langle r_k, u_k \rangle / \ u_k\ ^2$	
7:	$d_k' \leftarrow d_k + \lambda_k u_k$	
8:	if $\operatorname{align}(abla,d_k')-\operatorname{align}(abla,d_k)\geqslant\delta$ then	
9:	$\textit{\textit{d}}_{k+1} \gets \textit{\textit{d}}_k'$	
10:	$\int \Lambda + \lambda_k \qquad \text{if } u_k = v_k - z$	
	$\Lambda_t \leftarrow \left\{ \Lambda(1-\lambda_k/\ d_k\) \text{if } u_k = -d_k/\ d_k\ ight.$	
11:	else	
12:	break	\triangleright exit <i>k</i> -loop
13:	$g \leftarrow d_k / \Lambda$	▷ normalization

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)
- The stopping criterion is an alignment improvement condition (typically $\delta=10^{-3}$ and $K=+\infty)$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1:for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$

3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: $v_t \leftarrow \underset{v \in C}{\operatorname{arg\,min}} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

Algorithm Boosted Frank-Wolfe (BoostFW)

Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.

- 1: for t = 0 to T 1 do
- 2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$
- 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

AlgorithmFrank-Wolfe (FW)Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: $v_t \leftarrow \arg\min_{v \in C} \langle \nabla f(x_t), v \rangle$ 3: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

Algorithm Boosted Frank-Wolfe (BoostFW)

Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.

1: for
$$t = 0$$
 to $T - 1$ do

2:
$$g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$$

3:
$$x_{t+1} \leftarrow x_t + \gamma_t g_t$$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1: for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

• What is the convergence rate of BoostFW?

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1:for t = 0 to T - 1 do2: $g_t \leftarrow \text{procedure}(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

 $x^* = x_1$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?

AlgorithmBoosted Frank-Wolfe (BoostFW)Input: $x_0 \in C$, $\gamma_t \in [0, 1]$, $K \in \mathbb{N} \setminus \{0\}$, $\delta \in]0, 1[$.1:for t = 0 to T - 1 do2: $g_t \leftarrow$ procedure $(x_t, -\nabla f(x_t), K, \delta)$ 3: $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?
- How does it compare to the state-of-the-art?

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min \left\{ \frac{\langle -\nabla f(x_t), g_t \rangle}{L \|g_t\|^2}, 1 \right\}$ ("short step") and suppose that $N_t \ge \omega t$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t\right)$$

• Let *N_t* be the number of iterations up to *t* where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min \left\{ \frac{\langle -\nabla f(x_t), g_t \rangle}{L ||g_t||^2}, 1 \right\}$ ("short step") and suppose that $N_t \ge \omega t$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t\right)$$

 The assumption N_t ≥ ωt simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min \left\{ \frac{\langle -\nabla f(x_t), g_t \rangle}{L ||g_t||^2}, 1 \right\}$ ("short step") and suppose that $N_t \ge \omega t$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t\right)$$

- The assumption N_t ≥ ωt simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active
- Else, BoostFW reduces to FW and the convergence rate is $\frac{4LD^2}{t+2}$
Boosting Frank-Wolfe

 Let N_t be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f : \mathbb{R}^n \to \mathbb{R}$ be a *L*-smooth, convex, and μ -gradient dominated function, and let $x_0 \in \arg\min_{v \in C} \langle \nabla f(y), v \rangle$ for some $y \in C$. Set $\gamma_t = \min \left\{ \frac{\langle -\nabla f(x_t), g_t \rangle}{L ||g_t||^2}, 1 \right\}$ ("short step") and suppose that $N_t \ge \omega t$. Then

$$f(x_t) - \min_{\mathcal{C}} f \leqslant \frac{LD^2}{2} \exp\left(-\delta^2 \frac{\mu}{L} \omega t\right)$$

- The assumption N_t ≥ ωt simply states that N_t is nonnegligeable, i.e., that the boosting procedure is active
- Else, BoostFW reduces to FW and the convergence rate is $\frac{4LD^2}{t+2}$
- In practice, $N_t pprox t$ (so $\omega \lesssim 1$)

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$\min_{x \in \mathbb{R}^{|\mathcal{A}|}} \sum_{a \in \mathcal{A}} \tau_a x_a \left(1 + 0.03 \left(\frac{x_a}{c_a} \right)^4 \right)$$

s.t. $\|x\|_1 \leq \tau$
s.t. $\|x\|_1 \leq \tau$
$$\sum_{r \in \mathcal{R}_{i,j}} y_r = d_{i,j} \qquad (i,j) \in S$$

 $y_r \geq 0 \qquad r \in \mathcal{R}_{i,j}, (i,j) \in S$

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i \langle a_i, x \rangle))$$

s.t. $||x||_1 \leq \tau$

$$\begin{split} \min_{X \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i,j) \in \mathcal{I}} h_{\rho}(Y_{i,j} - X_{i,j}) \\ \text{s.t.} \|X\|_{\text{nuc}} \leqslant \tau \end{split}$$

n xe

 We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$\begin{split} \min_{\substack{x \in \mathbb{R}^{|\mathcal{A}|} \\ \text{s.t. } \|x\|_{1} \leqslant \tau}} \sum_{\substack{x \in \mathbb{R}^{|\mathcal{A}|} \\ a \in \mathcal{A}}} \tau_{a} x_{a} \left(1 + 0.03 \left(\frac{x_{a}}{c_{a}}\right)^{4}\right) \\ \text{s.t. } x_{a} = \sum_{r \in \mathcal{R}} \mathbb{I}_{\{a \in r\}} y_{r} \quad a \in \mathcal{A} \\ \sum_{r \in \mathcal{R}_{i,j}} y_{r} = d_{i,j} \quad (i,j) \in \mathcal{S} \\ y_{r} \ge 0 \quad r \in \mathcal{R}_{i,j}, (i,j) \in \mathcal{S} \\ \text{s.t. } \|x\|_{1} \leqslant \tau \end{split}$$

• For BoostFW and AFW we also run the line search-free variants (the "short step" strategy) and label them with an "L"

• Traffic assignment

- Sparse logistic regression on the Gisette dataset
- Collaborative filtering on the MovieLens 100k dataset

40

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$egin{aligned} & a_t \leftarrow ext{away vertex} \ & v_t \leftarrow rgmin_{v \in \mathcal{C}} \langle
abla f(x_t), v
angle \ & x_{t+1} \leftarrow x_t + \gamma_t (v_t - a_t) \end{aligned}$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$egin{aligned} & a_t \leftarrow ext{away vertex} \ & v_t \leftarrow rgmin_{v \in \mathcal{C}} \langle
abla f(x_t), v
angle \ & x_{t+1} \leftarrow x_t + \gamma_t(v_t - oldsymbol{a}_t) \end{aligned}$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

• (details)

DICG

$$egin{aligned} & a_t \leftarrow ext{away vertex} \ & v_t \leftarrow rgmin_{v \in \mathcal{C}} \langle
abla f(x_t), v
angle \ & x_{t+1} \leftarrow x_t + \gamma_t(v_t - oldsymbol{a}_t) \end{aligned}$$

BoostDICG

 $a_t \leftarrow \text{away vertex}$ $g_t \leftarrow \text{procedure}(a_t, -\nabla f(x_t), K, \delta)$ $x_{t+1} \leftarrow x_t + \gamma_t g_t$ • BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms

- BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms
- Although it performs more linear minimizations per iteration, the progress obtained greatly overcomes their cost

- BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms
- Although it performs more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- The boosting procedure can be applied to any descent direction -d_t (obtained from, e.g., momentum acceleration, stochasticity, etc.):

$$g_t \leftarrow \text{procedure}(x_t, -d_t, K, \delta)$$
$$x_{t+1} \leftarrow x_t + \gamma_t g_t$$

Large-scale optimization

Consider

$$\min \left\{ f(x) \coloneqq \frac{1}{m} \sum_{i=1}^{m} f_i(x) \right\}$$

s.t. $x \in C$

where

- $\mathcal{C} \subset \mathbb{R}^n$ is a compact convex set
- $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ are smooth (non)convex functions
- *m* ≫ 1 is very large

Large-scale optimization

Consider

$$\min \left\{ f(x) \coloneqq \frac{1}{m} \sum_{i=1}^{m} f_i(x) \right\}$$

s.t. $x \in C$

where

- $\mathcal{C} \subset \mathbb{R}^n$ is a compact convex set
- $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ are smooth (non)convex functions
- *m* ≫ 1 is very large

Computing f(x) or $\nabla f(x)$ is too expensive

- Cannot use line search
- More efficient to use an estimator $\tilde{\nabla} f(x)$ to get approximate (but cheap) gradient information

TemplateStochastic Frank-WolfeInput: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1:for t = 0 to T - 1 do2:Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \arg\min(\tilde{\nabla}f(x_t), v)$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

TemplateStochastic Frank-WolfeInput: $x_0 \in C$, $\gamma_t \in [0, 1]$.1: for t = 0 to T - 1 do2: Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \operatorname*{arg\,min}_{v \in C} \langle \tilde{\nabla}f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$

Template Stochastic Frank-Wolfe

Input: $x_0 \in C$, $\gamma_t \in [0, 1]$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: $v_t \leftarrow \arg\min_{v \in \mathcal{C}} \langle \tilde{\nabla} f(x_t), v \rangle$

4:
$$x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$$

TemplateStochastic Frank-WolfeInput: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \arg\min_{v \in C} \langle \tilde{\nabla}f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

Typical analysis: let $\varepsilon_t := f(x_t) - \min_{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$\mathsf{E}[\varepsilon_{t+1}] \leqslant (1-\gamma_t)\mathsf{E}[\varepsilon_t] + \gamma_t \mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|]D + \frac{L}{2}\gamma_t^2 D^2$$

Template Stochastic Frank-Wolfe Input: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do 2: Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \arg\min_{v \in C} \langle \tilde{\nabla}f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$ $x_t \leftarrow x_t + \gamma_t(v_t - x_t)$

Typical analysis: let $\varepsilon_t := f(x_t) - \min_{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$\mathsf{E}[\varepsilon_{t+1}] \leqslant (1-\gamma_t)\mathsf{E}[\varepsilon_t] + \gamma_t \mathsf{E}[\|\tilde{\nabla}f(\mathsf{x}_t) - \nabla f(\mathsf{x}_t)\|]D + \frac{L}{2}\gamma_t^2 D^2$$

TemplateStochastic Frank-WolfeInput: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \arg\min_{v \in C} \langle \tilde{\nabla}f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

Typical analysis: let $\varepsilon_t := f(x_t) - \min_{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$\mathsf{E}[\varepsilon_{t+1}] \leqslant (1-\gamma_t) \mathsf{E}[\varepsilon_t] + \gamma_t \mathsf{E}[\|\tilde{\nabla}f(\mathsf{x}_t) - \nabla f(\mathsf{x}_t)\|] D + \frac{L}{2} \gamma_t^2 D^2$$

By Jensen's inequality,

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|] \leq \sqrt{\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2]}$$

TemplateStochastic Frank-WolfeInput: $x_0 \in C, \ \gamma_t \in [0, 1].$ 1: for t = 0 to T - 1 do2: Update the gradient estimator $\tilde{\nabla}f(x_t)$ 3: $v_t \leftarrow \arg\min_{v \in C} \langle \tilde{\nabla}f(x_t), v \rangle$ 4: $x_{t+1} \leftarrow x_t + \gamma_t(v_t - x_t)$

Typical analysis: let $\varepsilon_t := f(x_t) - \min_{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$\mathsf{E}[\varepsilon_{t+1}] \leqslant (1-\gamma_t)\mathsf{E}[\varepsilon_t] + \gamma_t \mathsf{E}[\|\tilde{\nabla}f(\mathsf{x}_t) - \nabla f(\mathsf{x}_t)\|]D + \frac{L}{2}\gamma_t^2 D^2$$

By Jensen's inequality,

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|] \leq \sqrt{\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2]}$$

To obtain $\mathsf{E}[\varepsilon_t] = \mathcal{O}(1/t)$, we need $\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] = \mathcal{O}(1/t^2)$

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$\tilde{\nabla} f(x_t) \leftarrow \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) \quad \text{where} \quad i_1, \dots, i_{b_t} \overset{\text{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)$$

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$\tilde{\nabla} f(x_t) \leftarrow \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) \quad \text{where} \quad i_1, \dots, i_{b_t} \overset{\text{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)$$

This estimator is unbiased and its variance is bounded by

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{\mathcal{G}^2}{b_t} \quad \text{where} \quad \mathcal{G} \coloneqq \max_{i \in [\![1,m]\!]} \max_{x \in \mathcal{C}} \|\nabla f_i(x)\|$$

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$ilde{
abla} f(x_t) \leftarrow rac{1}{b_t} \sum_{i=i_1}^{i_{b_t}}
abla f_i(x_t) \quad ext{where} \quad i_1, \dots, i_{b_t} \overset{ ext{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m
rbracket)$$

This estimator is unbiased and its variance is bounded by

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{G^2}{b_t} \quad \text{where} \quad G := \max_{i \in [\![1,m]\!]} \max_{x \in \mathcal{C}} \|\nabla f_i(x)\|$$

so $b_t = \Theta(t^2)$ works

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$ilde{
abla} f(x_t) \leftarrow rac{1}{b_t} \sum_{i=i_1}^{i_{b_t}}
abla f_i(x_t) \quad ext{where} \quad i_1, \dots, i_{b_t} \overset{ ext{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m
rbracket)$$

This estimator is unbiased and its variance is bounded by

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{G^2}{b_t} \quad \text{where} \quad G := \max_{i \in [\![1,m]\!]} \max_{x \in \mathcal{C}} \|\nabla f_i(x)\|$$

so $b_t = \Theta(t^2)$ works

 Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan & Luo, 2016) satisfies

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{4L}{b_t}(\mathsf{E}[\varepsilon_t] + \mathsf{E}[\tilde{\varepsilon}_t])$$

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$ilde{
abla} f(x_t) \leftarrow rac{1}{b_t} \sum_{i=i_1}^{i_{b_t}}
abla f_i(x_t) \quad ext{where} \quad i_1, \dots, i_{b_t} \overset{ ext{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m
rbracket)$$

This estimator is unbiased and its variance is bounded by

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{G^2}{b_t} \quad \text{where} \quad G := \max_{i \in [\![1,m]\!]} \max_{x \in \mathcal{C}} \|\nabla f_i(x)\|$$

so $b_t = \Theta(t^2)$ works

 Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan & Luo, 2016) satisfies

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{4L}{b_t}(\mathsf{E}[\varepsilon_t] + \mathsf{E}[\tilde{\varepsilon}_t])$$

and $b_t = \Theta(t)$ works (by induction)

• The *vanilla* Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size *b_t*:

$$ilde{
abla} f(x_t) \leftarrow rac{1}{b_t} \sum_{i=i_1}^{i_{b_t}}
abla f_i(x_t) \quad ext{where} \quad i_1, \dots, i_{b_t} \overset{ ext{i.i.d.}}{\sim} \mathcal{U}(\llbracket 1, m
rbracket)$$

This estimator is unbiased and its variance is bounded by

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{G^2}{b_t} \quad \text{where} \quad G := \max_{i \in [\![1,m]\!]} \max_{x \in \mathcal{C}} \|\nabla f_i(x)\|$$

so $b_t = \Theta(t^2)$ works

 Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan & Luo, 2016) satisfies

$$\mathsf{E}[\|\tilde{\nabla}f(x_t) - \nabla f(x_t)\|^2] \leqslant \frac{4L}{b_t}(\mathsf{E}[\varepsilon_t] + \mathsf{E}[\tilde{\varepsilon}_t])$$

and $b_t = \Theta(t)$ works (by induction)

• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020), Zhang et al. (2020), Négiar et al. (2020)

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(x_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1-\rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{i_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t angle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(\mathbf{x}_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1-\rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{i_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t angle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(x_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1-\rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{i_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t angle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(x_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1 - \rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{i_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t angle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(x_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(\widetilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1 - \rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{i_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t angle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

.

Algorithm	Update $\tilde{\nabla}f(x_t)$
SFW	$\frac{1}{b_t}\sum_{i=i_1}^{i_{b_t}}\nabla f_i(x_t)$
SVRF	$ abla f(ilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(ilde{x}_t))$
SPIDER-FW	$ abla f(\widetilde{x}_t) + rac{1}{b_t}\sum_{i=i_1}^{i_{b_t}} (abla f_i(x_t) - abla f_i(x_{t-1}))$
ORGFW	$\frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_t) + (1 - \rho_t) \left(\tilde{\nabla} f(x_{t-1}) - \frac{1}{b_t} \sum_{i=i_1}^{i_{b_t}} \nabla f_i(x_{t-1}) \right)$
CSFW	$ ilde{ abla} f(x_{t-1}) + \sum_{i=i_1}^{\prime_{b_t}} \left(rac{1}{m} f_i'(\langle a_i, x_t \rangle) - [lpha_{t-1}]_i ight) a_i$
	and $[\alpha_t]_i \leftarrow \begin{cases} (1/m)f'_i(\langle a_i, x_t \rangle) & \text{if } i \in \{i_1, \dots, i_{b_t}\}\\ [\alpha_{t-1}]_i & \text{else} \end{cases}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} \|x - x_t\|_{H_t}^2$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} \|x - x_t\|_{H_t}^2$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

 $\begin{array}{l} \hline \textbf{Algorithm} \quad \text{Adaptive Gradient (AdaGrad)} \\ \hline \textbf{Input:} \ x_0 \in \mathcal{C}, \ \delta > 0, \ \eta > 0. \\ 1: \ \textbf{for} \ t = 0 \ \textbf{to} \ \mathcal{T} - 1 \ \textbf{do} \\ 2: \quad \text{Update the gradient estimator } \tilde{\nabla}f(x_t) \\ 3: \quad H_t \leftarrow \text{diag} \left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla}f(x_s)^2} \right) \\ 4: \quad x_{t+1} \leftarrow \arg\min_{x \in \mathcal{C}} \eta \langle \tilde{\nabla}f(x_t), x \rangle + \frac{1}{2} \|x - x_t\|_{H_t}^2 \end{array}$
Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} ||x - x_t||_{H_t}^2$

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} ||x - x_t||_{H_t}^2$

• We denote
$$||u||_{H_t}^2 = \langle u, H_t u \rangle$$

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} \|x - x_t\|_{H_t}^2$

• We denote $\|u\|_{H_t}^2 = \langle u, H_t u \rangle$

• The default value for the offset is $\delta \leftarrow 10^{-8}$

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)

Input: $x_0 \in C$, $\delta > 0$, $\eta > 0$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

3:
$$H_t \leftarrow \operatorname{diag}\left(\delta 1 + \sqrt{\sum_{s=0}^t \tilde{\nabla} f(x_s)^2}\right)$$

4: $x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{\nabla} f(x_t), x \rangle + \frac{1}{2} ||x - x_t||_{H_t}^2$

• We denote
$$\|u\|_{H_t}^2 = \langle u, H_t u \rangle$$

• The default value for the offset is $\delta \leftarrow 10^{-8}$

By first-order optimality condition (Polyak, 1987),

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \|x - (x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t))\|_{H_t}$$

By first-order optimality condition (Polyak, 1987),

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \|x - (x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t))\|_{H_t}$$

Ignoring the constraint set $\ensuremath{\mathcal{C}}$ for ease of exposition, we obtain

$$x_{t+1} \leftarrow x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t)$$

By first-order optimality condition (Polyak, 1987),

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \|x - (x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t))\|_{H_t}$$

Ignoring the constraint set $\ensuremath{\mathcal{C}}$ for ease of exposition, we obtain

$$x_{t+1} \leftarrow x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t)$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$[x_{t+1}]_i \leftarrow [x_t]_i - \frac{\eta[\tilde{\nabla}f(x_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(x_s)]_i^2}}$$

By first-order optimality condition (Polyak, 1987),

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \|x - (x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t))\|_{H_t}$$

Ignoring the constraint set $\ensuremath{\mathcal{C}}$ for ease of exposition, we obtain

$$x_{t+1} \leftarrow x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t)$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$[\mathbf{x}_{t+1}]_i \leftarrow [\mathbf{x}_t]_i - \frac{\eta[\tilde{\nabla}f(\mathbf{x}_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(\mathbf{x}_s)]_i^2}}$$

• The offset δ prevents from dividing by zero

By first-order optimality condition (Polyak, 1987),

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \|x - (x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t))\|_{H_t}$$

Ignoring the constraint set $\ensuremath{\mathcal{C}}$ for ease of exposition, we obtain

$$x_{t+1} \leftarrow x_t - \eta H_t^{-1} \tilde{\nabla} f(x_t)$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$[x_{t+1}]_i \leftarrow [x_t]_i - \frac{\eta[\tilde{\nabla}f(x_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(x_s)]_i^2}}$$

- The offset δ prevents from dividing by zero
- The step-size automatically adjusts to the geometry of the problem

We have

$$[x_{t+1}]_i \leftarrow [x_t]_i - \frac{\eta[\tilde{\nabla}f(x_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(x_s)]_i^2}}$$

We have

$$[x_{t+1}]_i \leftarrow [x_t]_i - \frac{\eta[\tilde{\nabla}f(x_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(x_s)]_i^2}}$$

SO

• If $[\tilde{\nabla}f(x_0)]_i = \ldots = [\tilde{\nabla}f(x_{t-1})]_i = 0$ and $[\tilde{\nabla}f(x_t)]_i > 0$ (feature *i* is "rare") then

$$[x_{t+1}]_i \approx [x_t]_i - \eta$$

We have

$$[\mathbf{x}_{t+1}]_i \leftarrow [\mathbf{x}_t]_i - \frac{\eta [\tilde{\nabla} f(\mathbf{x}_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla} f(\mathbf{x}_s)]_i^2}}$$

SO

• If $[\tilde{\nabla}f(x_0)]_i = \ldots = [\tilde{\nabla}f(x_{t-1})]_i = 0$ and $[\tilde{\nabla}f(x_t)]_i > 0$ (feature *i* is "rare") then

$$[x_{t+1}]_i \approx [x_t]_i - \eta$$

• If $[\tilde{\nabla}f(x_0)]_i = \ldots = [\tilde{\nabla}f(x_t)]_i = 1$ (feature *i* is "common") then

$$[x_{t+1}]_i \approx [x_t]_i - \frac{\eta}{\sqrt{t+1}}$$

We have

$$[x_{t+1}]_i \leftarrow [x_t]_i - \frac{\eta[\tilde{\nabla}f(x_t)]_i}{\delta + \sqrt{\sum_{s=0}^t [\tilde{\nabla}f(x_s)]_i^2}}$$

SO

• If $[\tilde{\nabla}f(x_0)]_i = \ldots = [\tilde{\nabla}f(x_{t-1})]_i = 0$ and $[\tilde{\nabla}f(x_t)]_i > 0$ (feature *i* is "rare") then

$$[x_{t+1}]_i \approx [x_t]_i - \eta$$

• If $[\tilde{\nabla}f(x_0)]_i = \ldots = [\tilde{\nabla}f(x_t)]_i = 1$ (feature *i* is "common") then

$$[x_{t+1}]_i \approx [x_t]_i - \frac{\eta}{\sqrt{t+1}}$$

Larger step-sizes are given to infrequent (but potentially very informative) features whenever they appear so that they do not go unnoticed. This adjusts the trajectory of the iterates

• How can we use adaptive gradients in FW?

- How can we use adaptive gradients in FW?
- Let $G_t = H_t^{-1} \tilde{\nabla} f(x_t)$, then unconstrained AdaGrad is

$$x_{t+1} \leftarrow x_t - \eta G_t$$

- How can we use adaptive gradients in FW?
- Let $G_t = H_t^{-1} \tilde{\nabla} f(x_t)$, then unconstrained AdaGrad is

$$x_{t+1} \leftarrow x_t - \eta G_t$$

Could we do

$$v_t \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle G_t, v \rangle$$
$$x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$$

as did FW for unconstrained gradient descent (for which $G_t = \nabla f(x_t)$)?

- How can we use adaptive gradients in FW?
- Let $G_t = H_t^{-1} \tilde{\nabla} f(x_t)$, then unconstrained AdaGrad is

$$x_{t+1} \leftarrow x_t - \eta G_t$$

Could we do

$$v_t \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle G_t, v \rangle$$
$$x_{t+1} \leftarrow x_t + \gamma_t (v_t - x_t)$$

as did FW for unconstrained gradient descent (for which $G_t = \nabla f(x_t)$)?

• We would likely lose the precious properties of the descent directions of AdaGrad

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow \operatorname*{arg\,min}_{x \in \mathcal{C}} \eta \langle \tilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{H_t}^2$$

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow rgmin_{x \in \mathcal{C}} \eta \langle ilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{H_t}^2$$

• This can become quite expensive and inefficient overall

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow rgmin_{x \in \mathcal{C}} \eta \langle ilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{H_t}^2$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow rgmin_{x \in \mathcal{C}} \eta \langle ilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{\mathcal{H}_t}^2$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow rgmin_{x \in \mathcal{C}} \eta \langle ilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{\mathcal{H}_t}^2$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

- Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
- Run only a small and fixed number K of iterations of FW ($K \sim 5$)

• Instead, consider the constrained subproblem occurring at every iteration:

$$x_{t+1} \leftarrow rgmin_{x \in \mathcal{C}} \eta \langle ilde{
abla} f(x_t), x
angle + rac{1}{2} \|x - x_t\|_{\mathcal{H}_t}^2$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

- Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
- Run only a small and fixed number K of iterations of FW ($K \sim 5$)
- We claim that leveraging just a small amount of information from the adaptive metric H_t is enough

Template Frank-Wolfe with adaptive gradients

Input: $x_0 \in C$, $0 < \lambda_t^- \leq \lambda_{t+1}^- \leq \lambda_{t+1}^+ \leq \lambda_t^+$, $K \in \mathbb{N} \setminus \{0\}$, $\eta > 0$, $\gamma_t \in [0, 1]$. 1: for t = 0 to T - 1 do

- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: Update the diagonal matrix H_t and clip its entries to $[\lambda_t^-, \lambda_t^+]$ 4: $v_0^{(t)} \leftarrow x_t$
- 5: for k = 0 to K 1 do

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{H_t}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

Template Frank-Wolfe with adaptive gradients

 $\textbf{Input: } x_0 \in \mathcal{C} \text{, } 0 < \lambda_t^- \leqslant \lambda_{t+1}^- \leqslant \lambda_{t+1}^+ \leqslant \lambda_t^+ \text{, } K \in \mathbb{N} \setminus \{0\} \text{, } \eta > 0 \text{, } \gamma_t \in [0, 1].$

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: Update the diagonal matrix H_t and clip its entries to $[\lambda_t^-, \lambda_t^+]$

4:
$$y_0^{(t)} \leftarrow x_t$$

5: for k = 0 to K - 1 do

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\operatorname{arg\,min}} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{H_t}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

Template Frank-Wolfe with adaptive gradients

Input: $x_0 \in \mathcal{C}$, $0 < \lambda_t^- \leqslant \lambda_{t+1}^- \leqslant \lambda_{t+1}^+ \leqslant \lambda_t^+$, $K \in \mathbb{N} \setminus \{0\}$, $\eta > 0$, $\gamma_t \in [0, 1]$.

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: Update the diagonal matrix H_t and clip its entries to $[\lambda_t^-, \lambda_t^+]$
- 4: $y_0^{(t)} \leftarrow x_t$
- 5: for k = 0 to K 1 do

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{H_t}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

Template Frank-Wolfe with adaptive gradients

 $\textbf{Input: } x_0 \in \mathcal{C} \text{, } 0 < \lambda_t^- \leqslant \lambda_{t+1}^- \leqslant \lambda_{t+1}^+ \leqslant \lambda_t^+ \text{, } K \in \mathbb{N} \setminus \{0\} \text{, } \eta > 0 \text{, } \gamma_t \in [0, 1].$

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: Update the diagonal matrix H_t and clip its entries to $[\lambda_t^-, \lambda_t^+]$
- 4: $y_0^{(t)} \leftarrow x_t$
- 5: for k = 0 to K 1 do

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \arg\min_{v \in C} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{\mathcal{H}_k}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

10: $x_{t+1} \leftarrow y_K^{(t)}$

• Lines 4-9 apply K iterations of FW to $\min_{x \in \mathcal{C}} \left\{ Q_t(x) \coloneqq f(x_t) + \langle \tilde{\nabla} f(x_t), x - x_t \rangle + \frac{1}{2\eta_t} \| x - x_t \|_{H_t}^2 \right\}$

Template Frank-Wolfe with adaptive gradients

Input: $x_0 \in C$, $0 < \lambda_t^- \leq \lambda_{t+1}^- \leq \lambda_{t+1}^+ \leq \lambda_t^+$, $K \in \mathbb{N} \setminus \{0\}$, $\eta > 0$, $\gamma_t \in [0, 1]$. 1: for t = 0 to T - 1 do 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$

Update the diagonal matrix H_t and clip its entries to [λ⁻_t, λ⁺_t]
 y₀^(t) ← x_t

5: **for** k = 0 **to** K - 1 **do**

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{H_t}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

10: $x_{t+1} \leftarrow y_K^{(t)}$

• Lines 4-9 apply K iterations of FW to $\min_{x \in \mathcal{C}} \left\{ Q_t(x) \coloneqq f(x_t) + \langle \tilde{\nabla} f(x_t), x - x_t \rangle + \frac{1}{2\eta_t} \| x - x_t \|_{H_t}^2 \right\}$

Template Frank-Wolfe with adaptive gradients

 $\textbf{Input: } x_0 \in \mathcal{C} \text{, } 0 < \lambda_t^- \leqslant \lambda_{t+1}^- \leqslant \lambda_{t+1}^+ \leqslant \lambda_t^+ \text{, } K \in \mathbb{N} \setminus \{0\} \text{, } \eta > 0 \text{, } \gamma_t \in [0, 1].$

- 1: for t = 0 to T 1 do
- 2: Update the gradient estimator $\tilde{\nabla} f(x_t)$
- 3: Update the diagonal matrix H_t and clip its entries to $[\lambda_t^-, \lambda_t^+]$

4:
$$y_0^{(t)} \leftarrow x_t$$

5: for k = 0 to K - 1 do

6:
$$\nabla Q_t(y_k^{(t)}) \leftarrow \tilde{\nabla} f(x_t) + \frac{1}{\eta_t} H_t(y_k^{(t)} - x_t)$$

7:
$$v_k^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg\min} \langle \nabla Q_t(y_k^{(t)}), v \rangle$$

8:
$$\gamma_k^{(t)} \leftarrow \min\left\{\eta_t \frac{\langle \nabla Q_t(y_k^{(t)}), y_k^{(t)} - v_k^{(t)} \rangle}{\|y_k^{(t)} - v_k^{(t)}\|_{H_t}^2}, \gamma_t\right\}$$

9:
$$y_{k+1} \leftarrow y_k^{(t)} + \gamma_k^{(t)} (v_k^{(t)} - y_k^{(t)})$$

- Lines 4-9 apply K iterations of FW to $\min_{x \in \mathcal{C}} \left\{ Q_t(x) \coloneqq f(x_t) + \langle \tilde{\nabla} f(x_t), x - x_t \rangle + \frac{1}{2\eta_t} \| x - x_t \|_{H_t}^2 \right\}$
- AdaX depending on the strategy for $\tilde{\nabla} f(x_t)$: AdaSFW, AdaSVRF, etc.

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_t \leftarrow (G(t+2)/(LD))^2$, $\eta_t \leftarrow \lambda_t^-/L$, and $\gamma_t \leftarrow 2/(t+2)$ satisfies

$$\mathbb{E}[f(x_t)] - \min_{\mathcal{C}} f \leqslant \frac{2LD^2(K+1+\kappa)}{t+1}$$

where $\kappa \coloneqq \lambda_0^+ / \lambda_0^-$

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_t \leftarrow (G(t+2)/(LD))^2$, $\eta_t \leftarrow \lambda_t^-/L$, and $\gamma_t \leftarrow 2/(t+2)$ satisfies

$$\mathbb{E}[f(x_t)] - \min_{\mathcal{C}} f \leqslant \frac{2LD^2(K+1+\kappa)}{t+1}$$

where $\kappa \coloneqq \lambda_0^+ / \lambda_0^-$

• In practice, no need to know G, L, D and simply set $b_t = \Theta(t^2)$

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_t \leftarrow (G(t+2)/(LD))^2$, $\eta_t \leftarrow \lambda_t^-/L$, and $\gamma_t \leftarrow 2/(t+2)$ satisfies

$$\mathbb{E}[f(x_t)] - \min_{\mathcal{C}} f \leqslant \frac{2LD^2(K+1+\kappa)}{t+1}$$

where $\kappa \coloneqq \lambda_0^+ / \lambda_0^-$

- In practice, no need to know G, L, D and simply set $b_t = \Theta(t^2)$
- Also no need for λ_t^-, λ_t^+ and can set η_t to a constant value

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_t \leftarrow (G(t+2)/(LD))^2$, $\eta_t \leftarrow \lambda_t^-/L$, and $\gamma_t \leftarrow 2/(t+2)$ satisfies

$$\mathbb{E}[f(x_t)] - \min_{\mathcal{C}} f \leqslant \frac{2LD^2(K+1+\kappa)}{t+1}$$

where $\kappa \coloneqq \lambda_0^+ / \lambda_0^-$

- In practice, no need to know G, L, D and simply set $b_t = \Theta(t^2)$
- Also no need for λ_t^-, λ_t^+ and can set η_t to a constant value
- AdaSVRF and AdaCSFW also yield $\mathcal{O}(1/t)$ convergence

Let $C \subset \mathbb{R}^n$ be a compact convex set with diameter D and $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_t \leftarrow (G(t+2)/(LD))^2$, $\eta_t \leftarrow \lambda_t^-/L$, and $\gamma_t \leftarrow 2/(t+2)$ satisfies

$$\mathbb{E}[f(x_t)] - \min_{\mathcal{C}} f \leqslant \frac{2LD^2(K+1+\kappa)}{t+1}$$

where $\kappa\coloneqq\lambda_0^+/\lambda_0^-$

- In practice, no need to know G, L, D and simply set $b_t = \Theta(t^2)$
- Also no need for λ_t^-, λ_t^+ and can set η_t to a constant value
- AdaSVRF and AdaCSFW also yield $\mathcal{O}(1/t)$ convergence
- If f_1, \ldots, f_m are nonconvex, then AdaSFW converges to a stationary point at a rate $\mathcal{O}(1/\sqrt{t})$

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run AdaX where X is the best performing variant
- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run AdaX where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run AdaX where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only
- In addition, we run AdamSFW, a variant of AdaSFW with momentum inspired by Kingma & Ba (2015); Reddi et al. (2018)

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run AdaX where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only
- In addition, we run AdamSFW, a variant of AdaSFW with momentum inspired by Kingma & Ba (2015); Reddi et al. (2018)
- We set $K \sim 5$

Support vector classification on a synthetic dataset

$$\begin{split} \min_{x \in \mathbb{R}^n} \; \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \langle a_i, x \rangle\}^2 \\ \text{s.t.} \; \|x\|_{\infty} \leqslant \tau \end{split}$$

Linear regression on the YearPredictionMSD dataset

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m (y_i - \langle a_i, x \rangle)^2$$

s.t. $\|x\|_1 \leq \tau$

Logistic regression on the RCV1 dataset

$$\begin{split} \min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-y_i \langle a_i, x \rangle)) \\ \text{s.t. } \|x\|_1 \leqslant \tau \end{split}$$

Convolutional neural network on the MNIST dataset

• Each layer of the neural network is constrained into an ℓ_1 -ball

AdamSFW strongly outperforms the other methods

• Each layer is constrained into an $\ell_\infty\text{-ball}$

• Each layer is constrained into an $\ell_\infty\text{-ball}$

AdaSFW and AdamSFW are the only ones to outperform SFW

• Each layer is constrained into an ℓ_{∞} -ball

- AdaSFW and AdamSFW are the only ones to outperform SFW
- AdamSFW reaches its maximum test accuracy very fast (good for early stopping)

• Each layer is constrained into an ℓ_{∞} -ball

- AdaSFW and AdamSFW are the only ones to outperform SFW
- AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
- AdaSFW yields the best test performance, despite optimizing slowly over the training set

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an ℓ_{∞} -ball

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an ℓ_{∞} -ball

AdaSFW and AdamSFW strongly outperform the other methods

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an $\ell_\infty\text{-ball}$

- AdaSFW and AdamSFW strongly outperform the other methods
- AdaSFW and AdamSFW are the only ones to outperform SFW

Thank you!

References (1/3)

- G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of conditional gradients. *ICML*, 2019.
- M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control, 1968.
- C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.
- C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-free adaptive gradients for largescale optimization. *arXiv*, 2020.
- J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 2011.
- M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
- D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. *NIPS*, 2016.
- E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. *ICML*, 2016.
- M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
- S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. *NIPS*, 2015.

References (2/3)

- G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. *arXiv*, 2013.
- G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. *SIAM J. Optim.*, 2016.
- E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math. Phys., 1966.
- F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained optimization with convergence guarantees. *NIPS*, 2017.
- H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. *COLT*, 2010.
- G. Négiar, G. Dresdner, A. Y.-T. Tsai, L. El Ghaoui, F. Locatello, R. M. Freund, and F. Pedregosa. Stochastic Frank-Wolfe for constrained finite-sum minimization. *ICML*, 2020.
- S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. ICLR, 2018.
- Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic non-convex minimization. AISTATS, 2019.
- P. Wolfe. Convergence theory in nonlinear programming. *Integer and Nonlinear Programming*. North-Holland, 1970.
- J. Xie, Z. Shen, C. Zhang, H. Qian, and B. Wang. Efficient projection-free online methods with stochastic recursive gradient. *AAAI*, 2020.

- A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic path-integrated differential estimator. ICML, 2019.
- M. Zhang, Z. Shen, A. Mokhtari, H. Hassani, A. Karbasi. One Sample Stochastic Frank-Wolfe. *AISTATS*, 2020.