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Introduction

Consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ
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Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈ ]1,∞[ \{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?
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The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.
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The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth convex function, and let x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. If
γt = 2

t+2 (default) or γt = min
{
〈∇f (xt ),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?
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The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory
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Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW
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• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW
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Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property
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Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt ),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt ] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]
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Boosting Frank-Wolfe

Why [xt , xt + gt ] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ C

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt ] ⊆ C by convexity
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Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ Rn, K ∈ N\{0}, δ ∈ ]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈C〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k )− align(∇, dk ) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)
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Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈ ]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?
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Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt ),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40



Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt ),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40



Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt ),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

14/40



Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt ),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40



Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

( xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j )

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”
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Computational experiments
• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset
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Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
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Takeaways

• BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe
algorithms

• Although it performs more linear minimizations per iteration, the progress
obtained greatly overcomes their cost

• The boosting procedure can be applied to any descent direction −dt
(obtained from, e.g., momentum acceleration, stochasticity, etc.):

gt ← procedure(xt ,−dt ,K , δ)
xt+1 ← xt + γtgt
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Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information
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Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt ] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt ] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)
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Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt ] + E[ε̃t ])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)
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21/40



Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt ]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else
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The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8
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The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt ]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem
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The Adaptive Gradient algorithm
We have

[xt+1]i ← [xt ]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

so
• If [∇̃f (x0)]i = . . . = [∇̃f (xt−1)]i = 0 and [∇̃f (xt)]i > 0 (feature i is

“rare”) then

[xt+1]i ≈ [xt ]i − η

• If [∇̃f (x0)]i = . . . = [∇̃f (xt)]i = 1 (feature i is “common”) then

[xt+1]i ≈ [xt ]i −
η√

t + 1

Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed. This adjusts
the trajectory of the iterates
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Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?

• Let Gt = H−1
t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈Gt , v〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad
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Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough
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Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t ]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k )← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k ), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k ), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k )

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}
• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.
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2ηt
‖x − xt‖2

Ht
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• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.
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Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• Also no need for λ−t , λ+

t and can set ηt to a constant value
• AdaSVRF and AdaCSFW also yield O(1/t) convergence
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/
√

t)
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Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5
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Support vector classification on a synthetic dataset

min
x∈Rn

1
m

m∑
i=1

max{0, 1− yi〈ai , x〉}2

s.t. ‖x‖∞ 6 τ
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Linear regression on the YearPredictionMSD dataset

min
x∈Rn

1
m

m∑
i=1

(yi − 〈ai , x〉)2

s.t. ‖x‖1 6 τ
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Logistic regression on the RCV1 dataset

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ
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Convolutional neural network on the MNIST dataset

• Each layer of the neural network is constrained into an `1-ball

• AdamSFW strongly outperforms the other methods
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Neural network with one hidden layer on the IMDB dataset
• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW are the only ones to outperform SFW
• AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
• AdaSFW yields the best test performance, despite optimizing slowly over the

training set
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Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW strongly outperform the other methods
• AdaSFW and AdamSFW are the only ones to outperform SFW
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Thank you!
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