
Frank-Wolfe with New and Practical Descent
Directions

Cyrille W. Combettes

School of Industrial and Systems Engineering
Georgia Institute of Technology

IOL & COGA Research Seminar
Zuse Institute Berlin and TU Berlin

October 27, 2020

Outline

1 Introduction

2 The Frank-Wolfe algorithm

3 Boosting Frank-Wolfe for convex minimization

4 Adaptive Frank-Wolfe for large-scale optimization

2/40

Introduction

Consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3/40

Introduction

Consider
min f (x)
s.t. x ∈ C

where
• C ⊂ Rn is a compact convex set
• f : Rn → R is a smooth convex function

Example
• Sparse logistic regression

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

• Low-rank matrix completion

min
X∈Rm×n

1
2|I|

∑
(i,j)∈I

(Yi,j − Xi,j)2

s.t. ‖X‖nuc 6 τ

3/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

xt

xt − γt∇f (xt)

xt+1

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive

• This is an issue with the method of projections, not necessarily with the
geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

Introduction

• A natural approach is to use any efficient method and add projections back
onto C to ensure feasibility

• However, in many situations projections onto C are very expensive
• This is an issue with the method of projections, not necessarily with the

geometry of C: linear minimizations over C can still be relatively cheap

Feasible region C Linear minimization Projection

`1/`2/`∞-ball O(n) O(n)
`p-ball, p ∈]1,∞[\{2} O(n) N/A
Nuclear norm-ball O(nonzeros) O(mn min{m, n})
Flow polytope O(n) O(n3.5)
Birkhoff polytope O(n3) N/A
Matroid polytope O(n ln(n)) O(poly(n))

N/A: no closed-form exists and solution must be computed via general optimization

• Can we avoid projections?

4/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vt

xt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt

xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C

• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections

• FW = pick a vertex (using gradient information) and move in that
direction

• Successfully applied to: traffic assignment, computer vision, optimal
transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction

• Successfully applied to: traffic assignment, computer vision, optimal
transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm
The Frank-Wolfe algorithm (Frank & Wolfe, 1956) a.k.a. conditional gradient
algorithm (Levitin & Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

−∇f (xt)

vtxt xt+1

• xt+1 is obtained by convex combination of xt ∈ C and vt ∈ C, thus xt+1 ∈ C
• FW uses linear minimizations (the “FW oracle”) instead of projections
• FW = pick a vertex (using gradient information) and move in that

direction
• Successfully applied to: traffic assignment, computer vision, optimal

transport, adversarial learning, etc.

5/40

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth convex function, and let x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. If
γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/40

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth convex function, and let x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. If
γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/40

The Frank-Wolfe algorithm

Theorem (Levitin & Polyak, 1966; Jaggi, 2013)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth convex function, and let x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. If
γt = 2

t+2 (default) or γt = min
{
〈∇f (xt),xt−vt〉

L‖xt−vt‖2 , 1
}

(“short step”), then

f (xt)−min
C

f 6
4LD2

t + 2

• The convergence rate cannot be improved (Canon & Cullum, 1968; Jaggi,
2013; Lan, 2013)

• Why?

6/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)

• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1

x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2

x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3

x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices

• This yields an inefficient zig-zagging trajectory

7/40

The Frank-Wolfe algorithm

Consider the simple problem

min 1
2‖x‖

2
2

s.t. x ∈ conv
((

0
1

)
,

(
−1
0

)
,

(
1
0

))

and x∗ =
(

0
0

)

x0

x∗

x1
x2x3 x4

• Let x0 =
(

0
1

)
• FW tries to reach x∗ by moving towards vertices
• This yields an inefficient zig-zagging trajectory

7/40

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/40

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/40

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/40

Improved Frank-Wolfe variants

• Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien & Jaggi,
2015): enhances FW by allowing to move away from vertices

x0

x1
x2x3

x4 x∗ = x5

• Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber &
Meshi, 2016): memory-free variant of AFW

• Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW
and FW

8/40

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?

• Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

9/40

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

9/40

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):
• Speed up FW by moving in a direction better aligned with −∇f (xt)

• Build this direction by using C to maintain the projection-free property

9/40

Boosting Frank-Wolfe

• Can we speed up FW in a simple way?
• Rule of thumb in optimization: follow the steepest direction

Idea (C & Pokutta, 2020):
• Speed up FW by moving in a direction better aligned with −∇f (xt)
• Build this direction by using C to maintain the projection-free property

9/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0

xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1

r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1

r2

d
gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt

and satisfies [xt , xt + gt] ⊆ C so we can update
xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

• How can we build a direction better aligned with −∇f (xt) and that allows
to update xt+1 without projection?

• v0 ∈ arg maxv∈C〈−∇f (xt), v〉
λ0u0 = 〈−∇f (xt),v0−xt〉

‖v0−xt‖2 (v0 − xt)
r1 = −∇f (xt)− λ0u0

• v1 ∈ arg maxv∈C〈r1, v〉
λ1u1 = 〈r1,v1−xt〉

‖v1−xt‖2 (v1 − xt)
r2 = r1 − λ1u1

• We could continue:
v2 ∈ arg maxv∈C〈r2, v〉

• d = λ0u0 + λ1u1

• gt = d/(λ0 + λ1)

λ0u0

r1r1

r2

λ1u1 r2

d

gt

v1

v0
xt

−∇f (xt)

• The boosted direction gt is better aligned with −∇f (xt) than is the FW
direction v0 − xt and satisfies [xt , xt + gt] ⊆ C so we can update

xt+1 = xt + γtgt for any γt ∈ [0, 1]

10/40

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ C

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/40

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ C

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/40

Boosting Frank-Wolfe

Why [xt , xt + gt] ⊆ C? Let Kt be the number of alignment rounds. We have

d =
Kt−1∑
k=0

λk(vk − xt) where λk > 0 and vk ∈ C

so if Λt =
∑K−1

k=0 λk , then

gt = 1
Λt

Kt−1∑
k=0

λk(vk − xt) =
(

1
Λt

Kt−1∑
k=0

λkvk

)
︸ ︷︷ ︸

∈C

−xt

Thus, xt + gt ∈ C so [xt , xt + gt] ⊆ C by convexity

11/40

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ Rn, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈C〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/40

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ Rn, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈C〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)

• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/40

Boosting Frank-Wolfe
Algorithm Finding a direction g well aligned with ∇ from a reference point z
Input: z ∈ C, ∇ ∈ Rn, K ∈ N\{0}, δ ∈]0, 1[.

1: d0 ← 0, Λ← 0
2: for k = 0 to K − 1 do
3: rk ← ∇− dk . k-th residual
4: vk ← arg maxv∈C〈rk , v〉 . FW oracle
5: uk ← arg maxu∈{vk−z,−dk/‖dk‖}〈rk , u〉
6: λk ← 〈rk , uk〉/‖uk‖2

7: d ′k ← dk + λkuk
8: if align(∇, d ′k)− align(∇, dk) > δ then
9: dk+1 ← d ′k

10: Λt ←
{

Λ + λk if uk = vk − z
Λ(1− λk/‖dk‖) if uk = −dk/‖dk‖

11: else
12: break . exit k-loop
13: g ← dk/Λ . normalization

• Technicality to ensure convergence of the procedure (Locatello et al., 2017)
• The stopping criterion is an alignment improvement condition (typically
δ = 10−3 and K = +∞)

12/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?

• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?

• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈C
〈∇f (xt), v〉

3: xt+1 ← xt + γt(vt − xt)

x0

x∗

x1
x2x3 x4

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: x0 ∈ C, γt ∈ [0, 1], K ∈ N\{0}, δ ∈]0, 1[.

1: for t = 0 to T − 1 do
2: gt ← procedure(xt ,−∇f (xt),K , δ)
3: xt+1 ← xt + γtgt

x0

x∗ = x1

• What is the convergence rate of BoostFW?
• Is BoostFW expensive in practice?
• How does it compare to the state-of-the-art?

13/40

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2

• In practice, Nt ≈ t (so ω . 1)

14/40

Boosting Frank-Wolfe

• Let Nt be the number of iterations up to t where at least 2 rounds of
alignment were performed (FW = always 1 round)

Theorem (C & Pokutta, 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f : Rn → R be a
L-smooth, convex, and µ-gradient dominated function, and let
x0 ∈ arg minv∈C〈∇f (y), v〉 for some y ∈ C. Set γt = min

{
〈−∇f (xt),gt〉

L‖gt‖2 , 1
}

(“short step”) and suppose that Nt > ωt. Then

f (xt)−min
C

f 6
LD2

2 exp
(
−δ2µ

Lωt
)

• The assumption Nt > ωt simply states that Nt is nonnegligeable, i.e., that
the boosting procedure is active

• Else, BoostFW reduces to FW and the convergence rate is 4LD2

t+2
• In practice, Nt ≈ t (so ω . 1)

14/40

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/40

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/40

Computational experiments
• We compare BoostFW to AFW, BCG, and DICG on a series of

experiments involving various objective functions and feasible regions

min
x∈Rn

‖y − Ax‖2
2

s.t. ‖x‖1 6 τ

min
x∈R|A|

∑
a∈A

τaxa

(
1 + 0.03

(xa

ca

)4
)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i , j) ∈ S

yr > 0 r ∈ Ri,j , (i , j) ∈ S

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi 〈ai , x〉))

s.t. ‖x‖1 6 τ

min
X∈Rm×n

1
|I|

∑
(i,j)∈I

hρ(Yi,j − Xi,j)

s.t. ‖X‖nuc 6 τ

• For BoostFW and AFW we also run the line search-free variants (the
“short step” strategy) and label them with an “L”

15/40

Computational experiments
• Sparse signal recovery • Traffic assignment

• Sparse logistic regression on the
Gisette dataset

• Collaborative filtering on the
MovieLens 100k dataset

16/40

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt

17/40

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/40

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/40

Boosting DICG

• DICG is known to perform particularly well on the video co-localization
experiment (YouTube-Objects dataset)

• BoostDICG: application of our method to DICG

• (details)
DICG BoostDICG
at ← away vertex at ← away vertex
vt ← arg min

v∈C
〈∇f (xt), v〉 gt ← procedure(at ,−∇f (xt),K , δ)

xt+1 ← xt + γt(vt − at) xt+1 ← xt + γtgt
17/40

Takeaways

• BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe
algorithms

• Although it performs more linear minimizations per iteration, the progress
obtained greatly overcomes their cost

• The boosting procedure can be applied to any descent direction −dt
(obtained from, e.g., momentum acceleration, stochasticity, etc.):

gt ← procedure(xt ,−dt ,K , δ)
xt+1 ← xt + γtgt

18/40

Takeaways

• BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe
algorithms

• Although it performs more linear minimizations per iteration, the progress
obtained greatly overcomes their cost

• The boosting procedure can be applied to any descent direction −dt
(obtained from, e.g., momentum acceleration, stochasticity, etc.):

gt ← procedure(xt ,−dt ,K , δ)
xt+1 ← xt + γtgt

18/40

Takeaways

• BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe
algorithms

• Although it performs more linear minimizations per iteration, the progress
obtained greatly overcomes their cost

• The boosting procedure can be applied to any descent direction −dt
(obtained from, e.g., momentum acceleration, stochasticity, etc.):

gt ← procedure(xt ,−dt ,K , δ)
xt+1 ← xt + γtgt

18/40

Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information

19/40

Large-scale optimization

Consider

min
{

f (x) := 1
m

m∑
i=1

fi (x)
}

s.t. x ∈ C
where
• C ⊂ Rn is a compact convex set
• f1, . . . , fm : Rn → R are smooth (non)convex functions
• m ≫ 1 is very large

Computing f (x) or ∇f (x) is too expensive
• Cannot use line search
• More efficient to use an estimator ∇̃f (x) to get approximate (but cheap)

gradient information

19/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)

20/40

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: x0 ∈ C, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: vt ← arg min

v∈C
〈∇̃f (xt), v〉

4: xt+1 ← xt + γt(vt − xt)

Typical analysis: let εt := f (xt)−minC f , then by smoothness, convexity, and
Cauchy-Schwarz,

E[εt+1] 6 (1− γt)E[εt] + γtE[‖∇̃f (xt)−∇f (xt)‖]D + L
2γ

2
t D2

By Jensen’s inequality,

E[‖∇̃f (xt)−∇f (xt)‖] 6
√

E[‖∇̃f (xt)−∇f (xt)‖2]

To obtain E[εt] = O(1/t), we need E[‖∇̃f (xt)−∇f (xt)‖2] = O(1/t2)
20/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)

21/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)

21/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works

• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe
algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)

21/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)

21/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)

• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),
Zhang et al. (2020), Négiar et al. (2020)

21/40

Stochastic Frank-Wolfe algorithms

• The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the
gradient by averaging over a minibatch of size bt :

∇̃f (xt)← 1
bt

ibt∑
i=i1

∇fi (xt) where i1, . . . , ibt
i.i.d.∼ U(J1,mK)

This estimator is unbiased and its variance is bounded by

E[‖∇̃f (xt)−∇f (xt)‖2] 6 G2

bt
where G := max

i∈J1,mK
max
x∈C
‖∇fi (x)‖

so bt = Θ(t2) works
• Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe

algorithm (SVRF) (Hazan & Luo, 2016) satisfies

E[‖∇̃f (xt)−∇f (xt)‖2] 6 4L
bt

(E[εt] + E[ε̃t])

and bt = Θ(t) works (by induction)
• See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020),

Zhang et al. (2020), Négiar et al. (2020)
21/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

Stochastic Frank-Wolfe algorithms

Algorithm Update ∇̃f (xt)

SFW 1
bt

ibt∑
i=i1

∇fi (xt)

SVRF ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (x̃t))

SPIDER-FW ∇f (x̃t) + 1
bt

ibt∑
i=i1

(∇fi (xt)−∇fi (xt−1))

ORGFW 1
bt

ibt∑
i=i1

∇fi (xt) + (1− ρt)

∇̃f (xt−1)− 1
bt

ibt∑
i=i1

∇fi (xt−1)


CSFW ∇̃f (xt−1) +

ibt∑
i=i1

(
1
m f ′i (〈ai , xt〉)− [αt−1]i

)
ai

and [αt]i ←
{

(1/m)f ′i (〈ai , xt〉) if i ∈ {i1, . . . , ibt}
[αt−1]i else

22/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan & Streeter
(2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: x0 ∈ C, δ > 0, η > 0.

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)

3: Ht ← diag

δ1 +

√√√√ t∑
s=0
∇̃f (xs)2


4: xt+1 ← arg min

x∈C
η〈∇̃f (xt), x〉+ 1

2‖x − xt‖2
Ht

• We denote ‖u‖2
Ht

= 〈u,Htu〉

• The default value for the offset is δ ← 10−8

23/40

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem

24/40

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem

24/40

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem

24/40

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero

• The step-size automatically adjusts to the geometry of the problem

24/40

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

xt+1 ← arg min
x∈C

‖x − (xt − ηH−1
t ∇̃f (xt))‖Ht

Ignoring the constraint set C for ease of exposition, we obtain

xt+1 ← xt − ηH−1
t ∇̃f (xt)

i.e., for every feature i ∈ J1, nK,

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

• The offset δ prevents from dividing by zero
• The step-size automatically adjusts to the geometry of the problem

24/40

The Adaptive Gradient algorithm
We have

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

so
• If [∇̃f (x0)]i = . . . = [∇̃f (xt−1)]i = 0 and [∇̃f (xt)]i > 0 (feature i is

“rare”) then

[xt+1]i ≈ [xt]i − η

• If [∇̃f (x0)]i = . . . = [∇̃f (xt)]i = 1 (feature i is “common”) then

[xt+1]i ≈ [xt]i −
η√

t + 1

Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed. This adjusts
the trajectory of the iterates

25/40

The Adaptive Gradient algorithm
We have

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

so
• If [∇̃f (x0)]i = . . . = [∇̃f (xt−1)]i = 0 and [∇̃f (xt)]i > 0 (feature i is

“rare”) then

[xt+1]i ≈ [xt]i − η

• If [∇̃f (x0)]i = . . . = [∇̃f (xt)]i = 1 (feature i is “common”) then

[xt+1]i ≈ [xt]i −
η√

t + 1

Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed. This adjusts
the trajectory of the iterates

25/40

The Adaptive Gradient algorithm
We have

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

so
• If [∇̃f (x0)]i = . . . = [∇̃f (xt−1)]i = 0 and [∇̃f (xt)]i > 0 (feature i is

“rare”) then

[xt+1]i ≈ [xt]i − η

• If [∇̃f (x0)]i = . . . = [∇̃f (xt)]i = 1 (feature i is “common”) then

[xt+1]i ≈ [xt]i −
η√

t + 1

Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed. This adjusts
the trajectory of the iterates

25/40

The Adaptive Gradient algorithm
We have

[xt+1]i ← [xt]i −
η[∇̃f (xt)]i

δ +
√∑t

s=0[∇̃f (xs)]2
i

so
• If [∇̃f (x0)]i = . . . = [∇̃f (xt−1)]i = 0 and [∇̃f (xt)]i > 0 (feature i is

“rare”) then

[xt+1]i ≈ [xt]i − η

• If [∇̃f (x0)]i = . . . = [∇̃f (xt)]i = 1 (feature i is “common”) then

[xt+1]i ≈ [xt]i −
η√

t + 1

Larger step-sizes are given to infrequent (but potentially very informative)
features whenever they appear so that they do not go unnoticed. This adjusts
the trajectory of the iterates

25/40

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?

• Let Gt = H−1
t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈Gt , v〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

26/40

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈Gt , v〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

26/40

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈Gt , v〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?

• We would likely lose the precious properties of the descent directions of
AdaGrad

26/40

Frank-Wolfe with adaptive gradients

• How can we use adaptive gradients in FW?
• Let Gt = H−1

t ∇̃f (xt), then unconstrained AdaGrad is

xt+1 ← xt − ηGt

Could we do

vt ← arg min
v∈C

〈Gt , v〉

xt+1 ← xt + γt(vt − xt)

as did FW for unconstrained gradient descent (for which Gt = ∇f (xt))?
• We would likely lose the precious properties of the descent directions of

AdaGrad

26/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall

• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))

• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)

• We claim that leveraging just a small amount of information from the
adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients

• Instead, consider the constrained subproblem occurring at every iteration:

xt+1 ← arg min
x∈C

η〈∇̃f (xt), x〉+ 1
2‖x − xt‖2

Ht

• This can become quite expensive and inefficient overall
• Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):
• Solve the subproblem using FW (sliding technique (Lan & Zhou, 2016))
• Run only a small and fixed number K of iterations of FW (K ∼ 5)
• We claim that leveraging just a small amount of information from the

adaptive metric Ht is enough

27/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}
• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}
• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}
• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}

• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}

• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients
Template Frank-Wolfe with adaptive gradients
Input: x0 ∈ C, 0 < λ−t 6 λ−t+1 6 λ+

t+1 6 λ+
t , K ∈ N\{0}, η > 0, γt ∈ [0, 1].

1: for t = 0 to T − 1 do
2: Update the gradient estimator ∇̃f (xt)
3: Update the diagonal matrix Ht and clip its entries to [λ−t , λ+

t]
4: y (t)

0 ← xt
5: for k = 0 to K − 1 do
6: ∇Qt(y (t)

k)← ∇̃f (xt) + 1
ηt

Ht(y (t)
k − xt)

7: v (t)
k ← arg min

v∈C
〈∇Qt(y (t)

k), v〉

8: γ
(t)
k ← min

{
ηt
〈∇Qt(y (t)

k), y (t)
k − v (t)

k 〉
‖y (t)

k − v (t)
k ‖2

Ht

, γt

}
9: yk+1 ← y (t)

k + γ
(t)
k (v (t)

k − y (t)
k)

10: xt+1 ← y (t)
K

• Lines 4-9 apply K iterations of FW to
minx∈C

{
Qt(x) := f (xt) + 〈∇̃f (xt), x − xt〉+ 1

2ηt
‖x − xt‖2

Ht

}
• AdaX depending on the strategy for ∇̃f (xt): AdaSFW, AdaSVRF, etc.

28/40

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• Also no need for λ−t , λ+

t and can set ηt to a constant value
• AdaSVRF and AdaCSFW also yield O(1/t) convergence
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/
√

t)

29/40

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)

• Also no need for λ−t , λ+
t and can set ηt to a constant value

• AdaSVRF and AdaCSFW also yield O(1/t) convergence
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/
√

t)

29/40

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• Also no need for λ−t , λ+

t and can set ηt to a constant value

• AdaSVRF and AdaCSFW also yield O(1/t) convergence
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/
√

t)

29/40

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• Also no need for λ−t , λ+

t and can set ηt to a constant value
• AdaSVRF and AdaCSFW also yield O(1/t) convergence

• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point
at a rate O(1/

√
t)

29/40

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)
Let C ⊂ Rn be a compact convex set with diameter D and f1, . . . , fm : Rn → R
be L-smooth convex functions. Then AdaSFW with bt ←

(
G(t + 2)/(LD)

)2,
ηt ← λ−t /L, and γt ← 2/(t + 2) satisfies

E[f (xt)]−min
C

f 6
2LD2(K + 1 + κ)

t + 1

where κ := λ+
0 /λ

−
0

• In practice, no need to know G , L,D and simply set bt = Θ(t2)
• Also no need for λ−t , λ+

t and can set ηt to a constant value
• AdaSVRF and AdaCSFW also yield O(1/t) convergence
• If f1, . . . , fm are nonconvex, then AdaSFW converges to a stationary point

at a rate O(1/
√

t)

29/40

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

30/40

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

30/40

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

30/40

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

30/40

Computational experiments

• We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and
CSFW on a wide range of experiments

• For the experiments with convex objectives, we run AdaX where X is the
best performing variant

• For the neural network experiments, CSFW is not applicable and we run
AdaSFW only

• In addition, we run AdamSFW, a variant of AdaSFW with momentum
inspired by Kingma & Ba (2015); Reddi et al. (2018)

• We set K ∼ 5

30/40

Support vector classification on a synthetic dataset

min
x∈Rn

1
m

m∑
i=1

max{0, 1− yi〈ai , x〉}2

s.t. ‖x‖∞ 6 τ

31/40

Linear regression on the YearPredictionMSD dataset

min
x∈Rn

1
m

m∑
i=1

(yi − 〈ai , x〉)2

s.t. ‖x‖1 6 τ

32/40

Logistic regression on the RCV1 dataset

min
x∈Rn

1
m

m∑
i=1

ln(1 + exp(−yi〈ai , x〉))

s.t. ‖x‖1 6 τ

33/40

Convolutional neural network on the MNIST dataset

• Each layer of the neural network is constrained into an `1-ball

• AdamSFW strongly outperforms the other methods

34/40

Neural network with one hidden layer on the IMDB dataset
• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW are the only ones to outperform SFW
• AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
• AdaSFW yields the best test performance, despite optimizing slowly over the

training set

35/40

Neural network with one hidden layer on the IMDB dataset
• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW are the only ones to outperform SFW

• AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
• AdaSFW yields the best test performance, despite optimizing slowly over the

training set

35/40

Neural network with one hidden layer on the IMDB dataset
• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW are the only ones to outperform SFW
• AdamSFW reaches its maximum test accuracy very fast (good for early stopping)

• AdaSFW yields the best test performance, despite optimizing slowly over the
training set

35/40

Neural network with one hidden layer on the IMDB dataset
• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW are the only ones to outperform SFW
• AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
• AdaSFW yields the best test performance, despite optimizing slowly over the

training set
35/40

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW strongly outperform the other methods
• AdaSFW and AdamSFW are the only ones to outperform SFW

36/40

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW strongly outperform the other methods

• AdaSFW and AdamSFW are the only ones to outperform SFW

36/40

Convolutional network on the CIFAR-10 dataset

• Each layer is constrained into an `∞-ball

• AdaSFW and AdamSFW strongly outperform the other methods
• AdaSFW and AdamSFW are the only ones to outperform SFW

36/40

Thank you!

37/40

References (1/3)

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning
of conditional gradients. ICML, 2019.

M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe
algorithm. SIAM J. Control, 1968.

C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.
C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-free adaptive gradients for large-

scale optimization. arXiv, 2020.
J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and

stochastic optimization. J. Mach. Learn. Res., 2011.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent con-

ditional gradient algorithm for structured polytopes. NIPS, 2016.
E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. ICML,

2016.
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization

variants. NIPS, 2015.

38/40

References (2/3)
G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.

arXiv, 2013.
G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM J. Optim.,

2016.
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math.

Phys., 1966.
F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained

optimization with convergence guarantees. NIPS, 2017.
H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.

COLT, 2010.
G. Négiar, G. Dresdner, A. Y.-T. Tsai, L. El Ghaoui, F. Locatello, R. M. Freund, and F. Pe-

dregosa. Stochastic Frank-Wolfe for constrained finite-sum minimization. ICML, 2020.
S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. ICLR, 2018.
Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic

non-convex minimization. AISTATS, 2019.
P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming.

North-Holland, 1970.
J. Xie, Z. Shen, C. Zhang, H. Qian, and B. Wang. Efficient projection-free online methods with

stochastic recursive gradient. AAAI, 2020.

39/40

References (3/3)

A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic path-integrated
differential estimator. ICML, 2019.

M. Zhang, Z. Shen, A. Mokhtari, H. Hassani, A. Karbasi. One Sample Stochastic Frank-Wolfe.
AISTATS, 2020.

40/40

	Introduction
	The Frank-Wolfe algorithm
	Boosting Frank-Wolfe for convex minimization
	Adaptive Frank-Wolfe for large-scale optimization

