Frank-Wolfe with New and Practical Descent Directions

Cyrille W. Combettes

School of Industrial and Systems Engineering Georgia Institute of Technology

IOL \& COGA Research Seminar

Zuse Institute Berlin and TU Berlin
October 27, 2020

π

Outline

(1) Introduction
(2) The Frank-Wolfe algorithm
(3) Boosting Frank-Wolfe for convex minimization
(4) Adaptive Frank-Wolfe for large-scale optimization

Introduction

Consider

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $\mathcal{C} \subset \mathbb{R}^{n}$ is a compact convex set
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth convex function

Introduction

Consider

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $\mathcal{C} \subset \mathbb{R}^{n}$ is a compact convex set
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth convex function

Example

- Sparse logistic regression
$\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right)$
s.t. $\|x\|_{1} \leqslant \tau$
- Low-rank matrix completion

$$
\begin{aligned}
& \min _{X \in \mathbb{R}^{m \times n}} \frac{1}{2|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}}\left(Y_{i, j}-X_{i, j}\right)^{2} \\
& \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{aligned}
$$

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility

$$
x_{t}-\gamma_{t} \nabla f\left(x_{t}\right)
$$

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_{1} / \ell_{2} / \ell_{\infty}$-ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$	$\mathcal{O}(n)$	N / A
Nuclear norm-ball	$\mathcal{O}($ nonzeros $)$	$\mathcal{O}(m n \min \{m, n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3.5}\right)$
Birkhoff polytope	$\mathcal{O}\left(n^{3}\right)$	N / A
Matroid polytope	$\mathcal{O}(n \ln (n))$	$\mathcal{O}($ poly $(n))$

N / A : no closed-form exists and solution must be computed via general optimization

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_{1} / \ell_{2} / \ell_{\infty}$-ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$	$\mathcal{O}(n)$	N / A
Nuclear norm-ball	$\mathcal{O}($ nonzeros $)$	$\mathcal{O}(m n \min \{m, n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3.5}\right)$
Birkhoff polytope	$\mathcal{O}\left(n^{3}\right)$	N / A
Matroid polytope	$\mathcal{O}(n \ln (n))$	$\mathcal{O}($ poly $(n))$

N / A : no closed-form exists and solution must be computed via general optimization

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_{1} / \ell_{2} / \ell_{\infty}$-ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$	$\mathcal{O}(n)$	N / A
Nuclear norm-ball	$\mathcal{O}($ nonzeros $)$	$\mathcal{O}(m n \min \{m, n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3.5}\right)$
Birkhoff polytope	$\mathcal{O}\left(n^{3}\right)$	N / A
Matroid polytope	$\mathcal{O}(n \ln (n))$	$\mathcal{O}($ poly $(n))$

N / A : no closed-form exists and solution must be computed via general optimization

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_{1} / \ell_{2} / \ell_{\infty}$-ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p}-ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$	$\mathcal{O}(n)$	N / A
Nuclear norm-ball	$\mathcal{O}($ nonzeros $)$	$\mathcal{O}(m n \min \{m, n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3.5}\right)$
Birkhoff polytope	$\mathcal{O}\left(n^{3}\right)$	N / A
Matroid polytope	$\mathcal{O}(n \ln (n))$	$\mathcal{O}($ poly $(n))$

N / A : no closed-form exists and solution must be computed via general optimization

Introduction

- A natural approach is to use any efficient method and add projections back onto \mathcal{C} to ensure feasibility
- However, in many situations projections onto \mathcal{C} are very expensive
- This is an issue with the method of projections, not necessarily with the geometry of \mathcal{C} : linear minimizations over \mathcal{C} can still be relatively cheap

Feasible region \mathcal{C}	Linear minimization	Projection
$\ell_{1} / \ell_{2} / \ell_{\infty}$-ball	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ℓ_{p} ball, $\left.p \in\right] 1, \infty[\backslash\{2\}$	$\mathcal{O}(n)$	N / A
Nuclear norm-ball	$\mathcal{O}($ nonzeros $)$	$\mathcal{O}(m n \min \{m, n\})$
Flow polytope	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3.5}\right)$
Birkhoff polytope	$\mathcal{O}\left(n^{3}\right)$	N / A
Matroid polytope	$\mathcal{O}(n \ln (n))$	$\mathcal{O}($ poly $(n))$

N/A: no closed-form exists and solution must be computed via general optimization

- Can we avoid projections?

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm \quad Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm \quad Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \arg \min \left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm \quad Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1:for t $t=0$ to $T-1$ do 2: $v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$ 3: $x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$.

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm \quad Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

- x_{t+1} is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

- x_{t+1} is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

- x_{t+1} is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections
- $\mathrm{FW}=$ pick a vertex (using gradient information) and move in that direction

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (Frank \& Wolfe, 1956) a.k.a. conditional gradient algorithm (Levitin \& Polyak, 1966):

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

- x_{t+1} is obtained by convex combination of $x_{t} \in \mathcal{C}$ and $v_{t} \in \mathcal{C}$, thus $x_{t+1} \in \mathcal{C}$
- FW uses linear minimizations (the "FW oracle") instead of projections
- $\mathrm{FW}=$ pick a vertex (using gradient information) and move in that direction
- Successfully applied to: traffic assignment, computer vision, optimal transport, adversarial learning, etc.

The Frank-Wolfe algorithm

Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

The Frank-Wolfe algorithm

Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

- The convergence rate cannot be improved (Canon \& Cullum, 1968; Jaggi, 2013; Lan, 2013)

The Frank-Wolfe algorithm

Theorem (Levitin \& Polyak, 1966; Jaggi, 2013)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth convex function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. If $\gamma_{t}=\frac{2}{t+2}\left(\right.$ default) or $\gamma_{t}=\min \left\{\frac{\left\langle\nabla f\left(x_{t}\right), x_{t}-v_{t}\right\rangle}{L\left\|x_{t}-v_{t}\right\|^{2}}, 1\right\}$ ("short step"), then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{4 L D^{2}}{t+2}
$$

- The convergence rate cannot be improved (Canon \& Cullum, 1968; Jaggi, 2013; Lan, 2013)
- Why?

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices

The Frank-Wolfe algorithm

Consider the simple problem

$$
\min \frac{1}{2}\|x\|_{2}^{2}
$$

s.t. $x \in \operatorname{conv}\left(\binom{0}{1},\binom{-1}{0},\binom{1}{0}\right)$

and $x^{*}=\binom{0}{0}$

- Let $x_{0}=\binom{0}{1}$
- FW tries to reach x^{*} by moving towards vertices
- This yields an inefficient zig-zagging trajectory

Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber \& Meshi, 2016): memory-free variant of AFW

Improved Frank-Wolfe variants

- Away-Step Frank-Wolfe (AFW) (Wolfe, 1970; Lacoste-Julien \& Jaggi, 2015): enhances FW by allowing to move away from vertices

- Decomposition-Invariant Pairwise Conditional Gradient (DICG) (Garber \& Meshi, 2016): memory-free variant of AFW
- Blended Conditional Gradients (BCG) (Braun et al., 2019): blends FCFW and FW

Boosting Frank-Wolfe

- Can we speed up FW in a simple way?

Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea (C \& Pokutta, 2020):

- Speed up FW by moving in a direction better aligned with $-\nabla f\left(x_{t}\right)$

Boosting Frank-Wolfe

- Can we speed up FW in a simple way?
- Rule of thumb in optimization: follow the steepest direction

Idea (C \& Pokutta, 2020):

- Speed up FW by moving in a direction better aligned with $-\nabla f\left(x_{t}\right)$
- Build this direction by using \mathcal{C} to maintain the projection-free property

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{2}, v\right\rangle$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$
- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$
- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$

- The boosted direction g_{t} is better aligned with $-\nabla f\left(x_{t}\right)$ than is the FW direction $v_{0}-x_{t}$

Boosting Frank-Wolfe

- How can we build a direction better aligned with $-\nabla f\left(x_{t}\right)$ and that allows to update x_{t+1} without projection?
- $v_{0} \in \arg \max _{v \in \mathcal{C}}\left\langle-\nabla f\left(x_{t}\right), v\right\rangle$
$\lambda_{0} u_{0}=\frac{\left\langle-\nabla f\left(x_{t}\right), v_{0}-x_{t}\right\rangle}{\left\|v_{0}-x_{t}\right\|^{2}}\left(v_{0}-x_{t}\right)$
$r_{1}=-\nabla f\left(x_{t}\right)-\lambda_{0} u_{0}$
- $v_{1} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{1}, v\right\rangle$
$\lambda_{1} u_{1}=\frac{\left\langle r_{1}, v_{1}-x_{t}\right\rangle}{\left\|v_{1}-x_{t}\right\|^{2}}\left(v_{1}-x_{t}\right)$
$r_{2}=r_{1}-\lambda_{1} u_{1}$
- We could continue:
$v_{2} \in \arg \max _{v \in \mathcal{C}}\left\langle r_{2}, v\right\rangle$
- $d=\lambda_{0} u_{0}+\lambda_{1} u_{1}$
- $g_{t}=d /\left(\lambda_{0}+\lambda_{1}\right)$

- The boosted direction g_{t} is better aligned with $-\nabla f\left(x_{t}\right)$ than is the FW direction $v_{0}-x_{t}$ and satisfies $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ so we can update

$$
x_{t+1}=x_{t}+\gamma_{t} g_{t} \quad \text { for any } \gamma_{t} \in[0,1]
$$

Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$? Let K_{t} be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{C}
$$

Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$? Let K_{t} be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{C}
$$

so if $\Lambda_{t}=\sum_{k=0}^{K-1} \lambda_{k}$, then

$$
g_{t}=\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right)=\underbrace{\left(\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k} v_{k}\right)}_{\in \mathcal{C}}-x_{t}
$$

Boosting Frank-Wolfe

Why $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$? Let K_{t} be the number of alignment rounds. We have

$$
d=\sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right) \quad \text { where } \lambda_{k}>0 \text { and } v_{k} \in \mathcal{C}
$$

so if $\Lambda_{t}=\sum_{k=0}^{K-1} \lambda_{k}$, then

$$
g_{t}=\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k}\left(v_{k}-x_{t}\right)=\underbrace{\left(\frac{1}{\Lambda_{t}} \sum_{k=0}^{K_{t}-1} \lambda_{k} v_{k}\right)}_{\in \mathcal{C}}-x_{t}
$$

Thus, $x_{t}+g_{t} \in \mathcal{C}$ so $\left[x_{t}, x_{t}+g_{t}\right] \subseteq \mathcal{C}$ by convexity

Boosting Frank-Wolfe

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Input: $\left.z \in \mathcal{C}, \nabla \in \mathbb{R}^{n}, K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.					
1: $d_{0} \leftarrow 0, \Lambda \leftarrow 0$					
2:	for $k=0$ to $K-1$ do				
3:	$r_{k} \leftarrow \nabla-d_{k}$				
4:	$v_{k} \leftarrow \arg \max _{v \in \mathcal{C}}\left\langle r_{k}, v\right\rangle$				
5:	$u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$				
6:	$\lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$				
7:	$d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$				
8:	if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ residual				
9: then	$d_{k+1} \leftarrow d_{k}^{\prime}$				
	\triangleright FW oracle				
10:	$\Lambda_{t} \leftarrow \begin{cases}\Lambda+\lambda_{k} & \text { if } u_{k}=v_{k}-z \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) & \text { if } u_{k}=-d_{k} /\left\\|d_{k}\right\\|\end{cases}$				
11: else 12: break 13: $\leftarrow \leftarrow d_{k} / \Lambda$ \triangleright exit k-loop					

Boosting Frank-Wolfe

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Input: $\left.z \in \mathcal{C}, \nabla \in \mathbb{R}^{n}, K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.					
1: $d_{0} \leftarrow 0, \Lambda \leftarrow 0$					
2: for $k=0$ to $K-1$ do					
3: $\quad r_{k} \leftarrow \nabla-d_{k}$	$\triangleright k$-th residual				
4: $\quad v_{k} \leftarrow \arg \max _{v \in \mathcal{C}}\left\langle r_{k}, v\right\rangle$	\triangleright FW oracle				
5: $\quad u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$					
6: $\quad \lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$					
7: $\quad d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$					
8: if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ then					
9: $\quad d_{k+1} \leftarrow d_{k}^{\prime}$					
10: $\quad \Lambda_{t} \leftarrow \begin{cases}\Lambda+\lambda_{k} & \text { if } u_{k}=v_{k}-z \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) & \text { if } u_{k}=-d_{k} /\left\\|d_{k}\right\\|\end{cases}$					
11: else					
12: break	\triangleright exit k-loop				
13: $g \leftarrow d_{k} / \Lambda$	\triangleright normalization				

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)

Boosting Frank-Wolfe

Algorithm Finding a direction g well aligned with ∇ from a reference point z

Input:	$\left.z \in \mathcal{C}, \nabla \in \mathbb{R}^{n}, K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.					
1:	$d_{0} \leftarrow 0, \Lambda \leftarrow 0$					
2:	for $k=0$ to $K-1$ do					
3:	$r_{k} \leftarrow \nabla-d_{k}$					
4:	$v_{k} \leftarrow \arg \max _{v \in \mathcal{C}}\left\langle r_{k}, v\right\rangle$					
5:	$u_{k} \leftarrow \arg \max _{u \in\left\{v_{k}-z,-d_{k} /\left\\|d_{k}\right\\|\right\}}\left\langle r_{k}, u\right\rangle$					
6:	$\lambda_{k} \leftarrow\left\langle r_{k}, u_{k}\right\rangle /\left\\|u_{k}\right\\|^{2}$					
7:	$d_{k}^{\prime} \leftarrow d_{k}+\lambda_{k} u_{k}$					
8:	if $\operatorname{align}\left(\nabla, d_{k}^{\prime}\right)-\operatorname{align}\left(\nabla, d_{k}\right) \geqslant \delta$ thenal					
9:	$d_{k+1} \leftarrow d_{k}^{\prime}$					
10:	$\Lambda_{t} \leftarrow \begin{cases}\Lambda+\lambda_{k} & \text { if } u_{k}=v_{k}-z \\ \Lambda\left(1-\lambda_{k} /\left\\|d_{k}\right\\|\right) & \text { if } u_{k}=-d_{k} /\left\\|d_{k}\right\\|\end{cases}$					
11: else 12: break 13: $\leftarrow \leftarrow d_{k} / \Lambda$ \triangleright exit k-loop						

- Technicality to ensure convergence of the procedure (Locatello et al., 2017)
- The stopping criterion is an alignment improvement condition (typically $\delta=10^{-3}$ and $\left.K=+\infty\right)$

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)

Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3:

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

Boosting Frank-Wolfe

```
Algorithm Frank-Wolfe (FW)
Input: \(x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]\).
    1: for \(t=0\) to \(T-1\) do
    2: \(\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle\)
    3: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow$ procedure $\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Algorithm Boosted Frank-Wolfe (BoostFW)
Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.

1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)

Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$

Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow$ procedure $\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$

Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

- What is the convergence rate of BoostFW?

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$

Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?

Boosting Frank-Wolfe

Algorithm Frank-Wolfe (FW)
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.

$$
\begin{array}{ll}
\text { 1: } & \text { for } t=0 \text { to } T-1 \text { do } \\
\text { 2: } & v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle \\
\text { 3: } & x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{array}
$$

Algorithm Boosted Frank-Wolfe (BoostFW) Input: $\left.x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1], K \in \mathbb{N} \backslash\{0\}, \delta \in\right] 0,1[$.
1: for $t=0$ to $T-1$ do
2: $\quad g_{t} \leftarrow \operatorname{procedure}\left(x_{t},-\nabla f\left(x_{t}\right), K, \delta\right)$
3: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}$

- What is the convergence rate of BoostFW?
- Is BoostFW expensive in practice?
- How does it compare to the state-of-the-art?

Boosting Frank-Wolfe

- Let N_{t} be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C \& Pokutta, 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth, convex, and μ-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t\right)
$$

Boosting Frank-Wolfe

- Let N_{t} be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C \& Pokutta, 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth, convex, and μ-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t\right)
$$

- The assumption $N_{t} \geqslant \omega t$ simply states that N_{t} is nonnegligeable, i.e., that the boosting procedure is active

Boosting Frank-Wolfe

- Let N_{t} be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C \& Pokutta, 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth, convex, and μ-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t\right)
$$

- The assumption $N_{t} \geqslant \omega t$ simply states that N_{t} is nonnegligeable, i.e., that the boosting procedure is active
- Else, BoostFW reduces to FW and the convergence rate is $\frac{4 L D^{2}}{t+2}$

Boosting Frank-Wolfe

- Let N_{t} be the number of iterations up to t where at least 2 rounds of alignment were performed (FW = always 1 round)

Theorem (C \& Pokutta, 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a L-smooth, convex, and μ-gradient dominated function, and let $x_{0} \in \arg \min _{v \in \mathcal{C}}\langle\nabla f(y), v\rangle$ for some $y \in \mathcal{C}$. Set $\gamma_{t}=\min \left\{\frac{\left\langle-\nabla f\left(x_{t}\right), g_{t}\right\rangle}{L\left\|g_{t}\right\|^{2}}, 1\right\}$ ("short step") and suppose that $N_{t} \geqslant \omega t$. Then

$$
f\left(x_{t}\right)-\min _{\mathcal{C}} f \leqslant \frac{L D^{2}}{2} \exp \left(-\delta^{2} \frac{\mu}{L} \omega t\right)
$$

- The assumption $N_{t} \geqslant \omega t$ simply states that N_{t} is nonnegligeable, i.e., that the boosting procedure is active
- Else, BoostFW reduces to FW and the convergence rate is $\frac{4 L D^{2}}{t+2}$
- In practice, $N_{t} \approx t($ so $\omega \lesssim 1)$

Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$
\begin{array}{cc}
\min _{x \in \mathbb{R}^{|\mathcal{A}|}} \sum_{a \in \mathcal{A}} \tau_{a} x_{a}\left(1+0.03\left(\frac{x_{a}}{c_{a}}\right)^{4}\right) \\
\min _{x \in \mathbb{R}^{n}}\|y-A x\|_{2}^{2} & \text { s.t. } x_{a}=\sum_{r \in \mathcal{R}} \mathbb{1}_{\{a \in r\}} y_{r} \quad a \in \mathcal{A} \\
\text { s.t. }\|x\|_{1} \leqslant \tau & \sum_{r \in \mathcal{R}_{i, j}} y_{r}=d_{i, j} \quad(i, j) \in \mathcal{S} \\
y_{r} \geqslant 0 & r \in \mathcal{R}_{i, j},(i, j) \in \mathcal{S} \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) & \min _{x \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}} h_{\rho}\left(Y_{i, j}-X_{i, j}\right) \\
\text { s.t. }\|x\|_{1} \leqslant \tau & \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{array}
$$

Computational experiments

- We compare BoostFW to AFW, BCG, and DICG on a series of experiments involving various objective functions and feasible regions

$$
\begin{array}{cc}
\min _{x \in \mathbb{R}|\mathcal{A}|} \sum_{a \in \mathcal{A}} \tau_{a} x_{a}\left(1+0.03\left(\frac{x_{a}}{c_{a}}\right)^{4}\right) \\
\min _{x \in \mathbb{R}^{n}}\|y-A x\|_{2}^{2} & \text { s.t. } x_{a}=\sum_{r \in \mathcal{R}} \mathbb{1}_{\{a \in r\}} y_{r} \quad a \in \mathcal{A} \\
\text { s.t. }\|x\|_{1} \leqslant \tau & \sum_{r \in \mathcal{R}_{i, j}} y_{r}=d_{i, j} \quad(i, j) \in \mathcal{S} \\
y_{r} \geqslant 0 \quad r \in \mathcal{R}_{i, j},(i, j) \in \mathcal{S} \\
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) & \min _{x \in \mathbb{R}^{m \times n}} \frac{1}{|\mathcal{I}|} \sum_{(i, j) \in \mathcal{I}} h_{\rho}\left(Y_{i, j}-X_{i, j}\right) \\
\text { s.t. }\|x\|_{1} \leqslant \tau & \text { s.t. }\|X\|_{\text {nuc }} \leqslant \tau
\end{array}
$$

- For BoostFW and AFW we also run the line search-free variants (the "short step" strategy) and label them with an "L"

Computational experiments

- Sparse signal recovery
- Traffic assignment

- Sparse logistic regression on the Gisette dataset

- Collaborative filtering on the MovieLens 100k dataset

Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

- (details)

$$
\begin{array}{ll}
\text { DICG } & \text { BoostDICG } \\
a_{t} \leftarrow \operatorname{away} \text { vertex } & a_{t} \leftarrow \text { away vertex } \\
v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle & g_{t} \leftarrow \operatorname{procedure}\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right) \\
x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right) & x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}
\end{array}
$$

Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

- (details)

$$
\begin{array}{ll}
\text { DICG } & \text { BoostDICG } \\
a_{t} \leftarrow \operatorname{away} \text { vertex } & a_{t} \leftarrow \text { away vertex } \\
v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle & g_{t} \leftarrow \operatorname{procedure}\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right) \\
x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right) & x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}
\end{array}
$$

Boosting DICG

- DICG is known to perform particularly well on the video co-localization experiment (YouTube-Objects dataset)
- BoostDICG: application of our method to DICG

- (details)

$$
\begin{array}{ll}
\text { DICG } & \text { BoostDICG } \\
a_{t} \leftarrow \operatorname{away} \text { vertex } & a_{t} \leftarrow \text { away vertex } \\
v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla f\left(x_{t}\right), v\right\rangle & g_{t} \leftarrow \operatorname{procedure}\left(a_{t},-\nabla f\left(x_{t}\right), K, \delta\right) \\
x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-a_{t}\right) & x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}
\end{array}
$$

Takeaways

- BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms

Takeaways

- BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms
- Although it performs more linear minimizations per iteration, the progress obtained greatly overcomes their cost

Takeaways

- BoostFW is an intuitive and generic procedure to speed up Frank-Wolfe algorithms
- Although it performs more linear minimizations per iteration, the progress obtained greatly overcomes their cost
- The boosting procedure can be applied to any descent direction $-d_{t}$ (obtained from, e.g., momentum acceleration, stochasticity, etc.):

$$
\begin{aligned}
& g_{t} \leftarrow \text { procedure }\left(x_{t},-d_{t}, K, \delta\right) \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t} g_{t}
\end{aligned}
$$

Large-scale optimization

Consider

$$
\begin{aligned}
& \min \left\{f(x):=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)\right\} \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $\mathcal{C} \subset \mathbb{R}^{n}$ is a compact convex set
- $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth (non)convex functions
- $m \ggg 1$ is very large

Large-scale optimization

Consider

$$
\begin{aligned}
& \min \left\{f(x):=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)\right\} \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

where

- $\mathcal{C} \subset \mathbb{R}^{n}$ is a compact convex set
- $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth (non)convex functions
- $m \ggg 1$ is very large

Computing $f(x)$ or $\nabla f(x)$ is too expensive

- Cannot use line search
- More efficient to use an estimator $\tilde{\nabla} f(x)$ to get approximate (but cheap) gradient information

Stochastic Frank-Wolfe algorithms

```
Template Stochastic Frank-Wolfe
Input: \(x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]\).
    1: for \(t=0\) to \(T-1\) do
    2: Update the gradient estimator \(\tilde{\nabla} f\left(x_{t}\right)\)
    3: \(\quad v_{t} \leftarrow \arg \min \left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle\)
    \(v \in \mathcal{C}\)
    4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```


Stochastic Frank-Wolfe algorithms

```
Template Stochastic Frank-Wolfe
Input: \(x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]\).
    1: for \(t=0\) to \(T-1\) do
    2: Update the gradient estimator \(\tilde{\nabla} f\left(x_{t}\right)\)
    3: \(\quad v_{t} \leftarrow \arg \min \left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle\)
    \(v \in \mathcal{C}\)
    4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```


Stochastic Frank-Wolfe algorithms

```
Template Stochastic Frank-Wolfe
Input: \(x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]\).
    1: for \(t=0\) to \(T-1\) do
    2: Update the gradient estimator \(\tilde{\nabla} f\left(x_{t}\right)\)
    3: \(\quad v_{t} \leftarrow \arg \min \left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle\)
    \(v \in \mathcal{C}\)
    4: \(\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)\)
```


Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: \quad Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad v_{t} \leftarrow \arg \min \left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Typical analysis: let $\varepsilon_{t}:=f\left(x_{t}\right)-\min _{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$
\mathrm{E}\left[\varepsilon_{t+1}\right] \leqslant\left(1-\gamma_{t}\right) \mathrm{E}\left[\varepsilon_{t}\right]+\gamma_{t} \mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] D+\frac{L}{2} \gamma_{t}^{2} D^{2}
$$

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: \quad Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad v_{t} \leftarrow \arg \min \left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Typical analysis: let $\varepsilon_{t}:=f\left(x_{t}\right)-\min _{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$
\mathrm{E}\left[\varepsilon_{t+1}\right] \leqslant\left(1-\gamma_{t}\right) \mathrm{E}\left[\varepsilon_{t}\right]+\gamma_{t} \mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] D+\frac{L}{2} \gamma_{t}^{2} D^{2}
$$

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Typical analysis: let $\varepsilon_{t}:=f\left(x_{t}\right)-\min _{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$
\mathrm{E}\left[\varepsilon_{t+1}\right] \leqslant\left(1-\gamma_{t}\right) \mathrm{E}\left[\varepsilon_{t}\right]+\gamma_{t} \mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] D+\frac{L}{2} \gamma_{t}^{2} D^{2}
$$

By Jensen's inequality,

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] \leqslant \sqrt{\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right]}
$$

Stochastic Frank-Wolfe algorithms

Template Stochastic Frank-Wolfe
Input: $x_{0} \in \mathcal{C}, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\tilde{\nabla} f\left(x_{t}\right), v\right\rangle$
4: $\quad x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)$

Typical analysis: let $\varepsilon_{t}:=f\left(x_{t}\right)-\min _{\mathcal{C}} f$, then by smoothness, convexity, and Cauchy-Schwarz,

$$
\mathrm{E}\left[\varepsilon_{t+1}\right] \leqslant\left(1-\gamma_{t}\right) \mathrm{E}\left[\varepsilon_{t}\right]+\gamma_{t} \mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] D+\frac{L}{2} \gamma_{t}^{2} D^{2}
$$

By Jensen's inequality,

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|\right] \leqslant \sqrt{\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right]}
$$

To obtain $\mathrm{E}\left[\varepsilon_{t}\right]=\mathcal{O}(1 / t)$, we need $\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right]=\mathcal{O}\left(1 / t^{2}\right)$

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

This estimator is unbiased and its variance is bounded by

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{G^{2}}{b_{t}} \quad \text { where } \quad G:=\max _{i \in \llbracket 1, m \rrbracket} \max _{x \in \mathcal{C}}\left\|\nabla f_{i}(x)\right\|
$$

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

This estimator is unbiased and its variance is bounded by

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{G^{2}}{b_{t}} \quad \text { where } \quad G:=\max _{i \in \llbracket 1, m \rrbracket} \max _{x \in \mathcal{C}}\left\|\nabla f_{i}(x)\right\|
$$

so $b_{t}=\Theta\left(t^{2}\right)$ works

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

This estimator is unbiased and its variance is bounded by

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{G^{2}}{b_{t}} \quad \text { where } \quad G:=\max _{i \in \llbracket 1, m \rrbracket} \max _{x \in \mathcal{C}}\left\|\nabla f_{i}(x)\right\|
$$

so $b_{t}=\Theta\left(t^{2}\right)$ works

- Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan \& Luo, 2016) satisfies

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{4 L}{b_{t}}\left(\mathrm{E}\left[\varepsilon_{t}\right]+\mathrm{E}\left[\tilde{\varepsilon}_{t}\right]\right)
$$

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

This estimator is unbiased and its variance is bounded by

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{G^{2}}{b_{t}} \quad \text { where } \quad G:=\max _{i \in \llbracket 1, m \rrbracket} \max _{x \in \mathcal{C}}\left\|\nabla f_{i}(x)\right\|
$$

so $b_{t}=\Theta\left(t^{2}\right)$ works

- Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan \& Luo, 2016) satisfies

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{4 L}{b_{t}}\left(\mathrm{E}\left[\varepsilon_{t}\right]+\mathrm{E}\left[\tilde{\varepsilon}_{t}\right]\right)
$$

and $b_{t}=\Theta(t)$ works (by induction)

Stochastic Frank-Wolfe algorithms

- The vanilla Stochastic Frank-Wolfe algorithm (SFW) estimates the gradient by averaging over a minibatch of size b_{t} :

$$
\tilde{\nabla} f\left(x_{t}\right) \leftarrow \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right) \quad \text { where } \quad i_{1}, \ldots, i_{b_{t}} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(\llbracket 1, m \rrbracket)
$$

This estimator is unbiased and its variance is bounded by

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{G^{2}}{b_{t}} \quad \text { where } \quad G:=\max _{i \in \llbracket 1, m \rrbracket} \max _{x \in \mathcal{C}}\left\|\nabla f_{i}(x)\right\|
$$

so $b_{t}=\Theta\left(t^{2}\right)$ works

- Using variance reduction, the Stochastic Variance-Reduced Frank-Wolfe algorithm (SVRF) (Hazan \& Luo, 2016) satisfies

$$
\mathrm{E}\left[\left\|\tilde{\nabla} f\left(x_{t}\right)-\nabla f\left(x_{t}\right)\right\|^{2}\right] \leqslant \frac{4 L}{b_{t}}\left(\mathrm{E}\left[\varepsilon_{t}\right]+\mathrm{E}\left[\tilde{\varepsilon}_{t}\right]\right)
$$

and $b_{t}=\Theta(t)$ works (by induction)

- See also, e.g., Shen et al. (2019), Yurtsever et al. (2019), Xie et al. (2020), Zhang et al. (2020), Négiar et al. (2020)

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

Stochastic Frank-Wolfe algorithms

Algorithm Update $\tilde{\nabla} f\left(x_{t}\right)$

SFW $\quad \frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)$
SVRF

$$
\nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(\tilde{x}_{t}\right)\right)
$$

SPIDER-FW $\quad \nabla f\left(\tilde{x}_{t}\right)+\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)$
ORGFW

$$
\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t}\right)+\left(1-\rho_{t}\right)\left(\tilde{\nabla} f\left(x_{t-1}\right)-\frac{1}{b_{t}} \sum_{i=i_{1}}^{i_{b_{t}}} \nabla f_{i}\left(x_{t-1}\right)\right)
$$

CSFW

$$
\begin{aligned}
& \tilde{\nabla} f\left(x_{t-1}\right)+\sum_{i=i_{1}}^{i_{b_{t}}}\left(\frac{1}{m} f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right)-\left[\alpha_{t-1}\right]_{i}\right) a_{i} \\
& \text { and }\left[\alpha_{t}\right]_{i} \leftarrow \begin{cases}(1 / m) f_{i}^{\prime}\left(\left\langle a_{i}, x_{t}\right\rangle\right) & \text { if } i \in\left\{i_{1}, \ldots, i_{b_{t}}\right\} \\
{\left[\alpha_{t-1}\right]_{i}} & \text { else }\end{cases}
\end{aligned}
$$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

- We denote $\|u\|_{H_{t}}^{2}=\left\langle u, H_{t} u\right\rangle$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

- We denote $\|u\|_{H_{t}}^{2}=\left\langle u, H_{t} u\right\rangle$
- The default value for the offset is $\delta \leftarrow 10^{-8}$

The Adaptive Gradient algorithm

Simultaneously proposed by Duchi et al. (2011) and McMahan \& Streeter (2010):

Algorithm Adaptive Gradient (AdaGrad)
Input: $x_{0} \in \mathcal{C}, \delta>0, \eta>0$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: $\quad H_{t} \leftarrow \operatorname{diag}\left(\delta 1+\sqrt{\sum_{s=0}^{t} \tilde{\nabla} f\left(x_{s}\right)^{2}}\right)$
4: $\quad x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}$

- We denote $\|u\|_{H_{t}}^{2}=\left\langle u, H_{t} u\right\rangle$
- The default value for the offset is $\delta \leftarrow 10^{-8}$

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min }\left\|x-\left(x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)\right)\right\|_{H_{t}}
$$

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min }\left\|x-\left(x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)\right)\right\|_{H_{t}}
$$

Ignoring the constraint set \mathcal{C} for ease of exposition, we obtain

$$
x_{t+1} \leftarrow x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)
$$

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min }\left\|x-\left(x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)\right)\right\|_{H_{t}}
$$

Ignoring the constraint set \mathcal{C} for ease of exposition, we obtain

$$
x_{t+1} \leftarrow x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)
$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min }\left\|x-\left(x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)\right)\right\|_{H_{t}}
$$

Ignoring the constraint set \mathcal{C} for ease of exposition, we obtain

$$
x_{t+1} \leftarrow x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)
$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

- The offset δ prevents from dividing by zero

The Adaptive Gradient algorithm

By first-order optimality condition (Polyak, 1987),

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min }\left\|x-\left(x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)\right)\right\|_{H_{t}}
$$

Ignoring the constraint set \mathcal{C} for ease of exposition, we obtain

$$
x_{t+1} \leftarrow x_{t}-\eta H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)
$$

i.e., for every feature $i \in \llbracket 1, n \rrbracket$,

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

- The offset δ prevents from dividing by zero
- The step-size automatically adjusts to the geometry of the problem

The Adaptive Gradient algorithm

We have

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

The Adaptive Gradient algorithm

We have

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

SO

- If $\left[\tilde{\nabla} f\left(x_{0}\right)\right]_{i}=\ldots=\left[\tilde{\nabla} f\left(x_{t-1}\right)\right]_{i}=0$ and $\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}>0$ (feature i is "rare") then

$$
\left[x_{t+1}\right]_{i} \approx\left[x_{t}\right]_{i}-\eta
$$

The Adaptive Gradient algorithm

We have

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

so

- If $\left[\tilde{\nabla} f\left(x_{0}\right)\right]_{i}=\ldots=\left[\tilde{\nabla} f\left(x_{t-1}\right)\right]_{i}=0$ and $\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}>0$ (feature i is "rare") then

$$
\left[x_{t+1}\right]_{i} \approx\left[x_{t}\right]_{i}-\eta
$$

- If $\left[\tilde{\nabla} f\left(x_{0}\right)\right]_{i}=\ldots=\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}=1$ (feature i is "common") then

$$
\left[x_{t+1}\right]_{i} \approx\left[x_{t}\right]_{i}-\frac{\eta}{\sqrt{t+1}}
$$

The Adaptive Gradient algorithm

We have

$$
\left[x_{t+1}\right]_{i} \leftarrow\left[x_{t}\right]_{i}-\frac{\eta\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}}{\delta+\sqrt{\sum_{s=0}^{t}\left[\tilde{\nabla} f\left(x_{s}\right)\right]_{i}^{2}}}
$$

so

- If $\left[\tilde{\nabla} f\left(x_{0}\right)\right]_{i}=\ldots=\left[\tilde{\nabla} f\left(x_{t-1}\right)\right]_{i}=0$ and $\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}>0$ (feature i is "rare") then

$$
\left[x_{t+1}\right]_{i} \approx\left[x_{t}\right]_{i}-\eta
$$

- If $\left[\tilde{\nabla} f\left(x_{0}\right)\right]_{i}=\ldots=\left[\tilde{\nabla} f\left(x_{t}\right)\right]_{i}=1$ (feature i is "common") then

$$
\left[x_{t+1}\right]_{i} \approx\left[x_{t}\right]_{i}-\frac{\eta}{\sqrt{t+1}}
$$

Larger step-sizes are given to infrequent (but potentially very informative) features whenever they appear so that they do not go unnoticed. This adjusts the trajectory of the iterates

Frank-Wolfe with adaptive gradients

- How can we use adaptive gradients in FW?

Frank-Wolfe with adaptive gradients

- How can we use adaptive gradients in FW?
- Let $G_{t}=H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)$, then unconstrained AdaGrad is

$$
x_{t+1} \leftarrow x_{t}-\eta G_{t}
$$

Frank-Wolfe with adaptive gradients

- How can we use adaptive gradients in FW?
- Let $G_{t}=H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)$, then unconstrained AdaGrad is

$$
x_{t+1} \leftarrow x_{t}-\eta G_{t}
$$

Could we do

$$
\begin{aligned}
& v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle G_{t}, v\right\rangle \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{aligned}
$$

as did FW for unconstrained gradient descent (for which $G_{t}=\nabla f\left(x_{t}\right)$)?

Frank-Wolfe with adaptive gradients

- How can we use adaptive gradients in FW?
- Let $G_{t}=H_{t}^{-1} \tilde{\nabla} f\left(x_{t}\right)$, then unconstrained AdaGrad is

$$
x_{t+1} \leftarrow x_{t}-\eta G_{t}
$$

Could we do

$$
\begin{aligned}
& v_{t} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle G_{t}, v\right\rangle \\
& x_{t+1} \leftarrow x_{t}+\gamma_{t}\left(v_{t}-x_{t}\right)
\end{aligned}
$$

as did FW for unconstrained gradient descent (for which $G_{t}=\nabla f\left(x_{t}\right)$)?

- We would likely lose the precious properties of the descent directions of AdaGrad

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

- This can become quite expensive and inefficient overall

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

- Solve the subproblem using FW (sliding technique (Lan \& Zhou, 2016))

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

- Solve the subproblem using FW (sliding technique (Lan \& Zhou, 2016))
- Run only a small and fixed number K of iterations of FW $(K \sim 5)$

Frank-Wolfe with adaptive gradients

- Instead, consider the constrained subproblem occurring at every iteration:

$$
x_{t+1} \leftarrow \underset{x \in \mathcal{C}}{\arg \min } \eta\left\langle\tilde{\nabla} f\left(x_{t}\right), x\right\rangle+\frac{1}{2}\left\|x-x_{t}\right\|_{H_{t}}^{2}
$$

- This can become quite expensive and inefficient overall
- Note that AdaGrad is usually used for unconstrained optimization

Idea (C et al., 2020):

- Solve the subproblem using FW (sliding technique (Lan \& Zhou, 2016))
- Run only a small and fixed number K of iterations of FW $(K \sim 5)$
- We claim that leveraging just a small amount of information from the adaptive metric H_{t} is enough

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, \mathcal{K} \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{K}^{(t)}$

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, \mathcal{K} \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{K}^{(t)}$

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, \mathcal{K} \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{K}^{(t)}$

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, K \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{k}^{(t)}$

- Lines 4-9 apply K iterations of FW to $\min _{x \in \mathcal{C}}\left\{Q_{t}(x):=f\left(x_{t}\right)+\left\langle\tilde{\nabla} f\left(x_{t}\right), x-x_{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|x-x_{t}\right\|_{H_{t}}^{2}\right\}$

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, K \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{K}^{(t)}$

- Lines 4-9 apply K iterations of FW to $\min _{x \in \mathcal{C}}\left\{Q_{t}(x):=f\left(x_{t}\right)+\left\langle\tilde{\nabla} f\left(x_{t}\right), x-x_{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|x-x_{t}\right\|_{H_{t}}^{2}\right\}$

Frank-Wolfe with adaptive gradients

Template Frank-Wolfe with adaptive gradients
Input: $x_{0} \in \mathcal{C}, 0<\lambda_{t}^{-} \leqslant \lambda_{t+1}^{-} \leqslant \lambda_{t+1}^{+} \leqslant \lambda_{t}^{+}, \mathcal{K} \in \mathbb{N} \backslash\{0\}, \eta>0, \gamma_{t} \in[0,1]$.
1: for $t=0$ to $T-1$ do
2: Update the gradient estimator $\tilde{\nabla} f\left(x_{t}\right)$
3: Update the diagonal matrix H_{t} and clip its entries to $\left[\lambda_{t}^{-}, \lambda_{t}^{+}\right]$
4: $\quad y_{0}^{(t)} \leftarrow x_{t}$
5: \quad for $k=0$ to $K-1$ do
6: $\quad \nabla Q_{t}\left(y_{k}^{(t)}\right) \leftarrow \tilde{\nabla} f\left(x_{t}\right)+\frac{1}{\eta_{t}} H_{t}\left(y_{k}^{(t)}-x_{t}\right)$
7: $\quad v_{k}^{(t)} \leftarrow \underset{v \in \mathcal{C}}{\arg \min }\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), v\right\rangle$
8: $\quad \gamma_{k}^{(t)} \leftarrow \min \left\{\eta_{t} \frac{\left\langle\nabla Q_{t}\left(y_{k}^{(t)}\right), y_{k}^{(t)}-v_{k}^{(t)}\right\rangle}{\left\|y_{k}^{(t)}-v_{k}^{(t)}\right\|_{H_{t}}^{2}}, \gamma_{t}\right\}$
9: $\quad y_{k+1} \leftarrow y_{k}^{(t)}+\gamma_{k}^{(t)}\left(v_{k}^{(t)}-y_{k}^{(t)}\right)$
10: $\quad x_{t+1} \leftarrow y_{K}^{(t)}$

- Lines 4-9 apply K iterations of FW to $\min _{x \in \mathcal{C}}\left\{Q_{t}(x):=f\left(x_{t}\right)+\left\langle\tilde{\nabla} f\left(x_{t}\right), x-x_{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|x-x_{t}\right\|_{H_{t}}^{2}\right\}$
- AdaX depending on the strategy for $\tilde{\nabla} f\left(x_{t}\right)$: AdaSFW, AdaSVRF, etc.

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_{t} \leftarrow(G(t+2) /(L D))^{2}$, $\eta_{t} \leftarrow \lambda_{t}^{-} / L$, and $\gamma_{t} \leftarrow 2 /(t+2)$ satisfies

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\min _{\mathcal{C}} f \leqslant \frac{2 L D^{2}(K+1+\kappa)}{t+1}
$$

where $\kappa:=\lambda_{0}^{+} / \lambda_{0}^{-}$

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_{t} \leftarrow(G(t+2) /(L D))^{2}$, $\eta_{t} \leftarrow \lambda_{t}^{-} / L$, and $\gamma_{t} \leftarrow 2 /(t+2)$ satisfies

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\min _{\mathcal{C}} f \leqslant \frac{2 L D^{2}(K+1+\kappa)}{t+1}
$$

where $\kappa:=\lambda_{0}^{+} / \lambda_{0}^{-}$

- In practice, no need to know G, L, D and simply set $b_{t}=\Theta\left(t^{2}\right)$

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_{t} \leftarrow(G(t+2) /(L D))^{2}$, $\eta_{t} \leftarrow \lambda_{t}^{-} / L$, and $\gamma_{t} \leftarrow 2 /(t+2)$ satisfies

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\min _{\mathcal{C}} f \leqslant \frac{2 L D^{2}(K+1+\kappa)}{t+1}
$$

where $\kappa:=\lambda_{0}^{+} / \lambda_{0}^{-}$

- In practice, no need to know G, L, D and simply set $b_{t}=\Theta\left(t^{2}\right)$
- Also no need for $\lambda_{t}^{-}, \lambda_{t}^{+}$and can set η_{t} to a constant value

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_{t} \leftarrow(G(t+2) /(L D))^{2}$, $\eta_{t} \leftarrow \lambda_{t}^{-} / L$, and $\gamma_{t} \leftarrow 2 /(t+2)$ satisfies

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\min _{\mathcal{C}} f \leqslant \frac{2 L D^{2}(K+1+\kappa)}{t+1}
$$

where $\kappa:=\lambda_{0}^{+} / \lambda_{0}^{-}$

- In practice, no need to know G, L, D and simply set $b_{t}=\Theta\left(t^{2}\right)$
- Also no need for $\lambda_{t}^{-}, \lambda_{t}^{+}$and can set η_{t} to a constant value
- AdaSVRF and AdaCSFW also yield $\mathcal{O}(1 / t)$ convergence

Frank-Wolfe with adaptive gradients

Theorem (C et al., 2020)

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a compact convex set with diameter D and $f_{1}, \ldots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-smooth convex functions. Then AdaSFW with $b_{t} \leftarrow(G(t+2) /(L D))^{2}$, $\eta_{t} \leftarrow \lambda_{t}^{-} / L$, and $\gamma_{t} \leftarrow 2 /(t+2)$ satisfies

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\min _{\mathcal{C}} f \leqslant \frac{2 L D^{2}(K+1+\kappa)}{t+1}
$$

where $\kappa:=\lambda_{0}^{+} / \lambda_{0}^{-}$

- In practice, no need to know G, L, D and simply set $b_{t}=\Theta\left(t^{2}\right)$
- Also no need for $\lambda_{t}^{-}, \lambda_{t}^{+}$and can set η_{t} to a constant value
- AdaSVRF and AdaCSFW also yield $\mathcal{O}(1 / t)$ convergence
- If f_{1}, \ldots, f_{m} are nonconvex, then AdaSFW converges to a stationary point at a rate $\mathcal{O}(1 / \sqrt{t})$

Computational experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments

Computational experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run $\operatorname{Ada} X$ where X is the best performing variant

Computational experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run $\operatorname{Ada} X$ where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only

Computational experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run $\operatorname{Ada} X$ where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only
- In addition, we run AdamSFW, a variant of AdaSFW with momentum inspired by Kingma \& Ba (2015); Reddi et al. (2018)

Computational experiments

- We compare our method to SFW, SVRF, SPIDER-FW, ORGFW, and CSFW on a wide range of experiments
- For the experiments with convex objectives, we run $\operatorname{Ada} X$ where X is the best performing variant
- For the neural network experiments, CSFW is not applicable and we run AdaSFW only
- In addition, we run AdamSFW, a variant of AdaSFW with momentum inspired by Kingma \& Ba (2015); Reddi et al. (2018)
- We set $K \sim 5$

Support vector classification on a synthetic dataset

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i}\left\langle a_{i}, x\right\rangle\right\}^{2}
$$

$$
\text { s.t. }\|x\|_{\infty} \leqslant \tau
$$

Linear regression on the YearPredictionMSD dataset

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\left\langle a_{i}, x\right\rangle\right)^{2}
$$

$$
\text { s.t. }\|x\|_{1} \leqslant \tau
$$

Logistic regression on the RCV1 dataset

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i}\left\langle a_{i}, x\right\rangle\right)\right) \\
& \text { s.t. }\|x\|_{1} \leqslant \tau
\end{aligned}
$$

Convolutional neural network on the MNIST dataset

- Each layer of the neural network is constrained into an ℓ_{1}-ball

- AdamSFW strongly outperforms the other methods

Neural network with one hidden layer on the IMDB dataset

- Each layer is constrained into an ℓ_{∞}-ball

Neural network with one hidden layer on the IMDB dataset

- Each layer is constrained into an ℓ_{∞}-ball

- AdaSFW and AdamSFW are the only ones to outperform SFW

Neural network with one hidden layer on the IMDB dataset

- Each layer is constrained into an ℓ_{∞}-ball

- AdaSFW and AdamSFW are the only ones to outperform SFW
- AdamSFW reaches its maximum test accuracy very fast (good for early stopping)

Neural network with one hidden layer on the IMDB dataset

- Each layer is constrained into an ℓ_{∞}-ball

- AdaSFW and AdamSFW are the only ones to outperform SFW
- AdamSFW reaches its maximum test accuracy very fast (good for early stopping)
- AdaSFW yields the best test performance, despite optimizing slowly over the training set

Convolutional network on the CIFAR-10 dataset

- Each layer is constrained into an ℓ_{∞}-ball

Convolutional network on the CIFAR-10 dataset

- Each layer is constrained into an ℓ_{∞}-ball

- AdaSFW and AdamSFW strongly outperform the other methods

Convolutional network on the CIFAR-10 dataset

- Each layer is constrained into an ℓ_{∞}-ball

- AdaSFW and AdamSFW strongly outperform the other methods
- AdaSFW and AdamSFW are the only ones to outperform SFW

Thank you!

References ($1 / 3$)

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of conditional gradients. ICML, 2019.
M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM J. Control, 1968.
C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. ICML, 2020.
C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-free adaptive gradients for largescale optimization. arXiv, 2020.
J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 2011.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Q., 1956.
D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. NIPS, 2016.
E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. ICML, 2016.
M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. ICML, 2013.
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. NIPS, 2015.

References (2/3)

G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. arXiv, 2013.
G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM J. Optim., 2016.
E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Comp. Math. Math. Phys., 1966.
F. Locatello, M. Tschannen, G. Rätsch, and M. Jaggi. Greedy algorithms for cone constrained optimization with convergence guarantees. NIPS, 2017.
H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. COLT, 2010.
G. Négiar, G. Dresdner, A. Y.-T. Tsai, L. El Ghaoui, F. Locatello, R. M. Freund, and F. Pedregosa. Stochastic Frank-Wolfe for constrained finite-sum minimization. ICML, 2020.
S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. ICLR, 2018.
Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic non-convex minimization. AISTATS, 2019.
P. Wolfe. Convergence theory in nonlinear programming. Integer and Nonlinear Programming. North-Holland, 1970.
J. Xie, Z. Shen, C. Zhang, H. Qian, and B. Wang. Efficient projection-free online methods with stochastic recursive gradient. AAAI, 2020.

References (3/3)

A. Yurtsever, S. Sra, and V. Cevher. Conditional gradient methods via stochastic path-integrated differential estimator. ICML, 2019.
M. Zhang, Z. Shen, A. Mokhtari, H. Hassani, A. Karbasi. One Sample Stochastic Frank-Wolfe. AISTATS, 2020.

