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Objectives of this Talk

1. Develop a geometric understanding of NNs

» [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

» [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]
2. Translate two open problems into the polytope world:

» Can 3-layer NNs compute the maximum of 5 numbers?

» Can poly-size NNs solve the MST problem?

(both problems have broader context ...)
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Rectified linear unit (ReLU): relu(x) = max{0, x}
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RelLU Feedforward Neural Networks

» Acyclic (layered) digraph of ReLU neurons

» Computes function
TioreluoTy_10---0oTroreluo Ty

with linear transformations T;.

» Example: depth 3 (2 hidden layers).



NNs and CPWL Functions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))

f: R" — R can be represented by a ReLU NN if and only if f is
continuous and piecewise linear (CPWL).



Support Functions and Newton Polytopes
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The support function fp of a polytope P C R" maps a cost vector
x € R" to the objective value of the linear program max,cp x ' v.
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Support Functions and Newton Polytopes

Definition
The support function fp of a polytope P C R" maps a cost vector
x € R" to the objective value of the linear program max,cp x ' v.

(0,1)
X2
o |
(0,0) (1,0)
Definition
The Newton polytope of a convex CPWL function

f(x) = max{v{ x, vy x, ..., v,;rx} is P(f) = conv{vi, vo,..., vp}.



Bijection between Convex CPWL Functions and Polytopes

Have a bijection between these two sets:
» Convex CPWL functions R" — R,
» Polytopes in R”.

The bijection maps ...

» Functions to their Newton polytope f — Ps,
» Polytopes to their support function P — fp.
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Adding Two (Convex) CPWL Functions

max{0, x1,x2} + max{0, x2} = max{0, x2, x1, x1 + x2, x2,2x2 }

= max{0, x1,2x2, x1 + x2}
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» Minkowski sum: P Q :={p+q|p€P,qe Q},



The Bijection is a Semigroup Isomorphism

'Df+g:Pf®Pga
froq = fp + fq.

(Convex CPWL functions R" — R, +)

~

(Polytopes in R", ®)
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But not Every CPWL Function is Convex ... 7

» (CPWL functions, pointwise addition) is actually a group!
» Polytopes have no inverses w.r.t. Minkowski addition ...

» Can we do something about this?

YES!

~> Virtual Polytopes!
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Remember When You Learned Mathematics ...

» Semigroup (N, +) ~» group Z = {n—m | n,m € N}
> Semigroup (Z\ {0}, ) ~~ group @\ {0} = {2 | a, b € Z\ {0}}

In the same way:

» Virtual Polytopes = {g =PoQ|P,QCR" polytopes}
(Careful: §#P—-Q={p—q|lpeP,ge})

>Remember:%z§ & ad = be
>Inthesameway:g:§ & PRIS=QR®R

(formally via equivalence relations)
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Two Examples

Cancellation Rule:

(—eg)=(-21)-17"
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Adding two virtual polytopes:



We even have a Group Isomorphism!

(CPWL functions R" — R, +)

~

(Virtual Polytopes in R", ®)

In particular:

Every CPWL function is a difference of two convex CPWL functions.



Virtual Polytopes are Almost Polytopes

» They have a face lattice,
> faces are virtual polytopes.

» They have a volume,
» but volume can be negative.



The General Idea

Find out which virtual polytopes
can occur as Newton polytopes of CPWL functions

computed by neural networks of a certain size (or structure).
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We even have a Vector Space Isomorphism!

f= maxle{v,-Tx} = Pyxr=convi_ {A\vj} = AP

(CPWL functions, +, scalar multiplication)

~

(Virtual Polytopes, ®, scaling)

(for A < 0 also consistent with Minkowski difference)
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Which Operations can NNs perform?

» Addition <+ Minkowski addition Vv
» Scalar multiplication < Scaling of (virtual) polytopes v

> Taking Maxima 7



“Maximum” for Two Virtual Polytopes

For two convex CPWL functions f and g:

Pmax{f,g} = conv{Pf U Pg} = Pr @ Pg-



“Maximum” for Two Virtual Polytopes

For two convex CPWL functions f and g:
Prax{f,g} = conv{Pr U Pg} = Pr © Py.
For f =f, —f_ and g = gy — g_ (non-convex) CPWL functions.

= max{f,g} =max{fy —f_, g1 — g}
=max{f; +g-,g+ + 1} — (- +g-).



“Maximum” for Two Virtual Polytopes

For two convex CPWL functions f and g:
Prax{f,g} = conv{Pr U Pg} = Pr © Py.
For f =f, —f_ and g = gy — g_ (non-convex) CPWL functions.

= max{f,g} =max{fy —f_, g1 — g}
=max{fy +g_,gy + 1} — (- +g-)

Translating to virtual polytopes:

Pf@Pg = FPmax{f g}
(Pf+®Pg—)@(Pg+®PL)

(Pf_®'Dg7)




“Maximum” for Two Virtual Polytopes

For two convex CPWL functions f and g:
Prax{f,g} = conv{Pr U Pg} = Pr © Py.
For f =f, —f_ and g = gy — g_ (non-convex) CPWL functions.

= max{f,g} =max{fy —f_, g1 — g}
=max{fy +g_,gy + 1} — (- +g-)

Translating to virtual polytopes:

Pf@Pg = FPmax{f g}
:(Pf+®Pg—)@(Pg+®PL)
(Pr. ® Pg_)

Does this remind you of something? ~» 2 4 & = 292¢



We also have a Semiring Isomorphism!

(CPWL functions, max, +)

(Virtual Polytopes, @, ®)

(here you see the “tropical” world!)
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Which Operations can NNs perform?

» Addition <+ Minkowski addition Vv
» Scalar multiplication < Scaling of (virtual) polytopes v

> Taking Maxima <> convex hull of the union Vv



Take a Breath!

Now to the two open problems:

» Can 3-layer NNs compute the maximum of 5 numbers?

» Can poly-size NNs solve the MST problem?
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Computing the Maximum of Four Numbers

» Inductively: Maximum of n numbers with depth [log,(n)] + 1.

Question: Is this best possible?
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What's known?

» max{0,xj, x2} cannot be computed with 2 layers.
That’s all!

» No function known that provably needs more than 3 layers.

» Smallest open case:
Can max{0, x1, x2, X3, x4} be computed with 3 layers?
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Virtual Newton Polytopes of Neural Networks

L

points

(V|rtua|)
zonotopes
line segments P1

P1={Y®Z|Y, Z (virtual) zonotopes }
(convex hull of the union of two zonotopes)

P, = { finite Minkowski sums of (virtual) polytopes in P }

f(x) = max{0, x1, x2, x3, x4} can be computed by 3-layer NN

& 4-simplex A* = Pr € Ps.
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The Minimum Spanning Tree Problem

c= 1

AN CcuUzZUKY Al

Let X C {0,1}F be the set of characteristic vectors of spanning
trees in a fixed graph G = (V, E).

MST problem: Compute the CPWL function

c+— minc’x.

xeX

Question: Is there a poly-size NN computing this function?



Is there a poly-size NN to solve MST?

f(c) = minx"c = —max(—x)"
(¢) minx’ ¢ Xmea/{f( x)'c

= Ps = conv{—x | x € X}®~! = (~MST-Polytope)®*



Is there a poly-size NN to solve MST?

f(c) = minx"c = —max(—x)"
(¢) minx’ ¢ Xmea;;( x)'c

= Ps = conv{—x | x € X}®~! = (~MST-Polytope)®*

Proposition
There exists a poly-size NN computing f
54

The MST-Polytope can be (virtually) generated from points via
polynomially many operations of the form
» Minkowski addition,
» Convex hull of the union,

» Scaling (with possibly inverting).



Thank youl!
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Questions? ldeas?



