Tackling Neural Network Expressivity via (virtual Newton) Polytopes

Christoph Hertrich

IOL \& DISCOGA Research Seminar May 11, 2021

Objectives of this Talk

Objectives of this Talk

1. Develop a geometric understanding of NNs

Objectives of this Talk

1. Develop a geometric understanding of NNs

- [Zhang, Naitzat, Lim:

Tropical Geometry of Deep Neural Networks, ICML 2018]

- [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

Objectives of this Talk

1. Develop a geometric understanding of NNs

- [Zhang, Naitzat, Lim:

Tropical Geometry of Deep Neural Networks, ICML 2018]

- [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

Objectives of this Talk

1. Develop a geometric understanding of NNs

- [Zhang, Naitzat, Lim:

Tropical Geometry of Deep Neural Networks, ICML 2018]

- [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

- Can 3-layer NNs compute the maximum of 5 numbers?

Objectives of this Talk

1. Develop a geometric understanding of NNs

- [Zhang, Naitzat, Lim:

Tropical Geometry of Deep Neural Networks, ICML 2018]

- [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

- Can 3-layer NNs compute the maximum of 5 numbers?
- Can poly-size NNs solve the MST problem?

Objectives of this Talk

1. Develop a geometric understanding of NNs

- [Zhang, Naitzat, Lim:

Tropical Geometry of Deep Neural Networks, ICML 2018]

- [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

- Can 3-layer NNs compute the maximum of 5 numbers?
- Can poly-size NNs solve the MST problem?
(both problems have broader context ...)

A Single ReLU Neuron

A Single ReLU Neuron

Rectified linear unit (ReLU): relu $(x)=\max \{0, x\}$

A Single ReLU Neuron

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with linear transformations T_{i}.

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function

$$
T_{k} \circ \text { relu } \circ T_{k-1} \circ \cdots \circ T_{2} \circ \text { relu } \circ T_{1}
$$

with linear transformations T_{i}.

- Example: depth 3 (2 hidden layers).

NNs and CPWL Functions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU NN if and only if f is continuous and piecewise linear (CPWL).

Support Functions and Newton Polytopes

Definition

The support function f_{P} of a polytope $P \subseteq \mathbb{R}^{n}$ maps a cost vector $x \in \mathbb{R}^{n}$ to the objective value of the linear program $\max _{v \in P} x^{T} v$.

Support Functions and Newton Polytopes

Definition

The support function f_{P} of a polytope $P \subseteq \mathbb{R}^{n}$ maps a cost vector $x \in \mathbb{R}^{n}$ to the objective value of the linear program $\max _{v \in P} x^{T} v$.

Definition
The Newton polytope of a convex CPWL function $f(x)=\max \left\{v_{1}^{T} x, v_{2}^{T} x, \ldots, v_{p}^{T} x\right\}$ is $P(f)=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$.

Bijection between Convex CPWL Functions and Polytopes

Have a bijection between these two sets:

- Convex CPWL functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$,
- Polytopes in \mathbb{R}^{n}.

The bijection maps ...

- Functions to their Newton polytope $f \mapsto P_{f}$,
- Polytopes to their support function $P \mapsto f_{P}$.

Adding Two (Convex) CPWL Functions

$$
\begin{aligned}
\max \left\{0, x_{1}, x_{2}\right\}+\max \left\{0, x_{2}\right\} & =\max \left\{0, x_{2}, x_{1}, x_{1}+x_{2}, x_{2}, 2 x_{2}\right\} \\
& =\max \left\{0, x_{1}, 2 x_{2}, x_{1}+x_{2}\right\}
\end{aligned}
$$

Adding Two (Convex) CPWL Functions

$$
\begin{aligned}
\max \left\{0, x_{1}, x_{2}\right\}+\max \left\{0, x_{2}\right\} & =\max \left\{0, x_{2}, x_{1}, x_{1}+x_{2}, x_{2}, 2 x_{2}\right\} \\
& =\max \left\{0, x_{1}, 2 x_{2}, x_{1}+x_{2}\right\}
\end{aligned}
$$

$(0,1)$
$(0,2)$

Adding Two (Convex) CPWL Functions

$$
\begin{aligned}
\max \left\{0, x_{1}, x_{2}\right\}+\max \left\{0, x_{2}\right\} & =\max \left\{0, x_{2}, x_{1}, x_{1}+x_{2}, x_{2}, 2 x_{2}\right\} \\
& =\max \left\{0, x_{1}, 2 x_{2}, x_{1}+x_{2}\right\}
\end{aligned}
$$

- Minkowski sum: $P \otimes Q:=\{p+q \mid p \in P, q \in Q\}$,

The Bijection is a Semigroup Isomorphism

$$
\begin{aligned}
P_{f+g} & =P_{f} \otimes P_{g}, \\
f_{P \otimes Q} & =f_{P}+f_{Q} .
\end{aligned}
$$

(Convex CPWL functions $\mathbb{R}^{n} \rightarrow \mathbb{R},+$)

$$
\cong
$$

(Polytopes in \mathbb{R}^{n}, \otimes)

But not Every CPWL Function is Convex ... ?

But not Every CPWL Function is Convex ... ?

- (CPWL functions, pointwise addition) is actually a group!

But not Every CPWL Function is Convex ... ?

- (CPWL functions, pointwise addition) is actually a group!
- Polytopes have no inverses w.r.t. Minkowski addition ...

But not Every CPWL Function is Convex ... ?

- (CPWL functions, pointwise addition) is actually a group!
- Polytopes have no inverses w.r.t. Minkowski addition ...
- Can we do something about this?

But not Every CPWL Function is Convex ... ?

- (CPWL functions, pointwise addition) is actually a group!
- Polytopes have no inverses w.r.t. Minkowski addition ...
- Can we do something about this?

YES!

\rightsquigarrow Virtual Polytopes!

Remember When You Learned Mathematics ...

- Semigroup ($\mathbb{N},+$)

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$
- Semigroup ($\mathbb{Z} \backslash\{0\}, \cdot)$

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$
- Semigroup $(\mathbb{Z} \backslash\{0\}, \cdot) \rightsquigarrow \operatorname{group} \mathbb{Q} \backslash\{0\}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z} \backslash\{0\}\right\}$

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$
- Semigroup $(\mathbb{Z} \backslash\{0\}, \cdot) \rightsquigarrow \operatorname{group} \mathbb{Q} \backslash\{0\}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z} \backslash\{0\}\right\}$

In the same way:

- Virtual Polytopes $=\left\{\left.\frac{P}{Q}=P \oslash Q \right\rvert\, P, Q \subseteq \mathbb{R}^{n}\right.$ polytopes $\}$

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$
- Semigroup $(\mathbb{Z} \backslash\{0\}, \cdot) \rightsquigarrow \operatorname{group} \mathbb{Q} \backslash\{0\}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z} \backslash\{0\}\right\}$

In the same way:

- Virtual Polytopes $=\left\{\left.\frac{P}{Q}=P \oslash Q \right\rvert\, P, Q \subseteq \mathbb{R}^{n}\right.$ polytopes $\}$
(Careful: $\frac{p}{Q} \neq P-Q=\{p-q \mid p \in P, q \in Q\}$)

Remember When You Learned Mathematics ...

- Semigroup $(\mathbb{N},+) \rightsquigarrow$ group $\mathbb{Z}=\{n-m \mid n, m \in \mathbb{N}\}$
- Semigroup $(\mathbb{Z} \backslash\{0\}, \cdot) \rightsquigarrow \operatorname{group} \mathbb{Q} \backslash\{0\}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z} \backslash\{0\}\right\}$

In the same way:

- Virtual Polytopes $=\left\{\left.\frac{P}{Q}=P \oslash Q \right\rvert\, P, Q \subseteq \mathbb{R}^{n}\right.$ polytopes $\}$
(Careful: $\frac{p}{Q} \neq P-Q=\{p-q \mid p \in P, q \in Q\}$)
- Remember: $\frac{a}{b}=\frac{c}{d} \quad \Leftrightarrow \quad a d=b c$
- In the same way: $\frac{P}{Q}=\frac{R}{S} \quad \Leftrightarrow \quad P \otimes S=Q \otimes R$
(formally via equivalence relations)

Two Examples

Cancellation Rule:

$$
(\bullet \oslash \square)
$$

Two Examples

Cancellation Rule:

$$
(-0 \square)(-(0,1))
$$

Two Examples

Cancellation Rule:

$$
(\bullet \oslash \square)=(\bullet \oslash)=\dot{l}^{\otimes-1}
$$

Two Examples

Cancellation Rule:

$$
(\bullet \oslash \square)=(\bullet \oslash)=\dot{\emptyset}^{\otimes-1}
$$

Adding two virtual polytopes:

Two Examples

Cancellation Rule:

$$
(\bullet \oslash \square)=(\bullet \oslash)=\dot{\emptyset}^{\otimes-1}
$$

Adding two virtual polytopes:

$$
\begin{aligned}
& (\square \otimes \square) \otimes(\square \otimes,) \\
= & (\square \otimes \square) \otimes(\square \otimes, \quad)
\end{aligned}
$$

Two Examples

Cancellation Rule:

$$
(\cdots \odot \square)=(. \odot!)=!^{\theta-1}
$$

Adding two virtual polytopes:

$$
\begin{aligned}
& (\square \oslash \square) \otimes(\square \oslash) \\
& =(\square \otimes \Sigma) \oslash(\square \otimes \downarrow) \\
& =(\square),
\end{aligned}
$$

Two Examples

Cancellation Rule:

$$
(\cdots \odot \square)=(. \odot!)=!^{\theta-1}
$$

Adding two virtual polytopes:

We even have a Group Isomorphism!

$\left(\right.$ CPWL functions $\left.\mathbb{R}^{n} \rightarrow \mathbb{R},+\right)$
\cong
$\left(\right.$ Virtual Polytopes in $\left.\mathbb{R}^{n}, \otimes\right)$

In particular:
Every CPWL function is a difference of two convex CPWL functions.

$$
\begin{array}{r}
\frac{P}{Q} \mapsto f_{P}-f_{Q} \\
f-g \mapsto \frac{P_{f}}{P_{g}}
\end{array}
$$

Virtual Polytopes are Almost Polytopes

- They have a face lattice,
- faces are virtual polytopes.
- They have a volume,
- but volume can be negative.

The General Idea

Find out which virtual polytopes can occur as Newton polytopes of CPWL functions computed by neural networks of a certain size (or structure).

Which Operations can NNs perform?

- Addition
- Scalar multiplication
- ReLU activations

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication
- ReLU activations

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication ?
- ReLU activations ?

We even have a Vector Space Isomorphism!

$$
f=\max _{i=1}^{p}\left\{v_{i}^{T} x\right\} \quad \Rightarrow \quad P_{\lambda f}=\operatorname{conv}_{i=1}^{p}\left\{\lambda v_{i}\right\}=\lambda P_{f}
$$

(CPWL functions, + , scalar multiplication)
(Virtual Polytopes, \otimes, scaling)
(for $\lambda<0$ also consistent with Minkowski difference)

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication ?
- ReLU activations ?

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication \leftrightarrow Scaling of (virtual) polytopes \checkmark
- ReLU activations ?

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication \leftrightarrow Scaling of (virtual) polytopes \checkmark
- Taking Maxima ?

"Maximum" for Two Virtual Polytopes

For two convex CPWL functions f and g :

$$
P_{\max \{f, g\}}=\operatorname{conv}\left\{P_{f} \cup P_{g}\right\}=: P_{f} \oplus P_{g} .
$$

"Maximum" for Two Virtual Polytopes

For two convex CPWL functions f and g :

$$
P_{\max \{f, g\}}=\operatorname{conv}\left\{P_{f} \cup P_{g}\right\}=: P_{f} \oplus P_{g} .
$$

For $f=f_{+}-f_{-}$and $g=g_{+}-g_{-}$(non-convex) CPWL functions.

$$
\begin{aligned}
\Rightarrow \quad \max \{f, g\} & =\max \left\{f_{+}-f_{-}, g_{+}-g_{-}\right\} \\
& =\max \left\{f_{+}+g_{-}, g_{+}+f_{-}\right\}-\left(f_{-}+g_{-}\right)
\end{aligned}
$$

"Maximum" for Two Virtual Polytopes

For two convex CPWL functions f and g :

$$
P_{\max \{f, g\}}=\operatorname{conv}\left\{P_{f} \cup P_{g}\right\}=: P_{f} \oplus P_{g} .
$$

For $f=f_{+}-f_{-}$and $g=g_{+}-g_{-}$(non-convex) CPWL functions.

$$
\begin{aligned}
\Rightarrow \quad \max \{f, g\} & =\max \left\{f_{+}-f_{-}, g_{+}-g_{-}\right\} \\
& =\max \left\{f_{+}+g_{-}, g_{+}+f_{-}\right\}-\left(f_{-}+g_{-}\right)
\end{aligned}
$$

Translating to virtual polytopes:

$$
\begin{aligned}
P_{f} \oplus P_{g} & :=P_{\max \{f, g\}} \\
& =\frac{\left(P_{f_{+}} \otimes P_{g_{-}}\right) \oplus\left(P_{g_{+}} \otimes P_{f_{-}}\right)}{\left(P_{f_{-}} \otimes P_{g_{-}}\right)}
\end{aligned}
$$

"Maximum" for Two Virtual Polytopes

For two convex CPWL functions f and g :

$$
P_{\max \{f, g\}}=\operatorname{conv}\left\{P_{f} \cup P_{g}\right\}=: P_{f} \oplus P_{g} .
$$

For $f=f_{+}-f_{-}$and $g=g_{+}-g_{-}$(non-convex) CPWL functions.

$$
\begin{aligned}
\Rightarrow \quad \max \{f, g\} & =\max \left\{f_{+}-f_{-}, g_{+}-g_{-}\right\} \\
& =\max \left\{f_{+}+g_{-}, g_{+}+f_{-}\right\}-\left(f_{-}+g_{-}\right)
\end{aligned}
$$

Translating to virtual polytopes:

$$
\begin{aligned}
P_{f} \oplus P_{g} & :=P_{\max \{f, g\}} \\
& =\frac{\left(P_{f_{+}} \otimes P_{g_{-}}\right) \oplus\left(P_{g_{+}} \otimes P_{f_{-}}\right)}{\left(P_{f_{-}} \otimes P_{g_{-}}\right)}
\end{aligned}
$$

Does this remind you of something? $\rightsquigarrow \quad \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$

We also have a Semiring Isomorphism!

(CPWL functions, max, +)

$$
\cong
$$

(Virtual Polytopes, \oplus, \otimes)
(here you see the "tropical" world!)

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication \leftrightarrow Scaling of (virtual) polytopes \checkmark
- Taking Maxima ?

Which Operations can NNs perform?

- Addition \leftrightarrow Minkowski addition \checkmark
- Scalar multiplication \leftrightarrow Scaling of (virtual) polytopes \checkmark
- Taking Maxima \leftrightarrow convex hull of the union \checkmark

Take a Breath!

Now to the two open problems:

- Can 3-layer NNs compute the maximum of 5 numbers?
- Can poly-size NNs solve the MST problem?

Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Computing the Maximum of Four Numbers

Computing the Maximum of Four Numbers

- Inductively: Maximum of n numbers with depth $\left\lceil\log _{2}(n)\right\rceil+1$.

Computing the Maximum of Four Numbers

- Inductively: Maximum of n numbers with depth $\left\lceil\log _{2}(n)\right\rceil+1$.

Question: Is this best possible?

What's known?

What's known?

- $\max \left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.

What's known?

- max $\left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.

That's all!

What's known?

- max $\left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.

That's all!

- No function known that provably needs more than 3 layers.

What's known?

- max $\left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.

That's all!

- No function known that provably needs more than 3 layers.
- Smallest open case:

Can $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be computed with 3 layers?

Virtual Newton Polytopes of Neural Networks

$$
\mathcal{P}_{1}=\{Y \oplus Z \mid Y, Z(\text { virtual }) \text { zonotopes }\}
$$

(convex hull of the union of two zonotopes)

Virtual Newton Polytopes of Neural Networks

$\mathcal{P}_{1}=\{Y \oplus Z \mid Y, Z$ (virtual) zonotopes $\}$
(convex hull of the union of two zonotopes)
$\mathcal{P}_{2}=\left\{\right.$ finite Minkowski sums of (virtual) polytopes in $\left.\mathcal{P}_{1}\right\}$

Virtual Newton Polytopes of Neural Networks

$\mathcal{P}_{1}=\{Y \oplus Z \mid Y, Z$ (virtual) zonotopes $\}$
(convex hull of the union of two zonotopes)
$\mathcal{P}_{2}=\left\{\right.$ finite Minkowski sums of (virtual) polytopes in $\left.\mathcal{P}_{1}\right\}$
$f(x)=\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ can be computed by 3-layer NN

$$
\Leftrightarrow \quad \text { 4-simplex } \Delta^{4}=P_{f} \in \mathcal{P}_{2} .
$$

The Two Open Problems

- Can 3-layer NNs compute the maximum of 5 numbers?
- Can poly-size NNs solve the MST problem?

The Minimum Spanning Tree Problem

$$
\begin{aligned}
& G=\square \\
& \mathcal{X}=\{\bullet \square \square \square \square \square]
\end{aligned}
$$

Let $\mathcal{X} \subseteq\{0,1\}^{E}$ be the set of characteristic vectors of spanning trees in a fixed graph $G=(V, E)$.

The Minimum Spanning Tree Problem

$$
\begin{gathered}
G=\square \\
\left.\mathcal{X}=\left\{\begin{array}{l}
\bullet \square \\
\square \\
\square
\end{array}\right] \cdot \square \quad \square \square \square \cdot \square\right\}
\end{gathered}
$$

Let $\mathcal{X} \subseteq\{0,1\}^{E}$ be the set of characteristic vectors of spanning trees in a fixed graph $G=(V, E)$.

MST problem: Compute the CPWL function

$$
c \mapsto \min _{x \in \mathcal{X}} c^{T} x
$$

The Minimum Spanning Tree Problem

$$
\begin{gathered}
G=\square \\
\mathcal{X}=\left\{\begin{array}{l}
\bullet \square \\
\square \\
\square
\end{array} \square \cdot \square \square \square \cdot \square\right\}
\end{gathered}
$$

Let $\mathcal{X} \subseteq\{0,1\}^{E}$ be the set of characteristic vectors of spanning trees in a fixed graph $G=(V, E)$.

MST problem: Compute the CPWL function

$$
c \mapsto \min _{x \in \mathcal{X}} c^{T} x
$$

Question: Is there a poly-size NN computing this function?

Is there a poly-size NN to solve MST?

$$
\begin{aligned}
& f(c)=\min _{x \in \mathcal{X}} x^{T} c=-\max _{x \in \mathcal{X}}(-x)^{T} c \\
\Rightarrow \quad & P_{f}=\operatorname{conv}\{-x \mid x \in \mathcal{X}\}^{\otimes-1}=(- \text { MST-Polytope })^{\otimes-1}
\end{aligned}
$$

Is there a poly-size NN to solve MST?

$$
\begin{aligned}
& f(c)=\min _{x \in \mathcal{X}} x^{T} c=-\max _{x \in \mathcal{X}}(-x)^{T} c \\
\Rightarrow \quad & P_{f}=\operatorname{conv}\{-x \mid x \in \mathcal{X}\}^{\otimes-1}=(- \text { MST-Polytope })^{\otimes-1}
\end{aligned}
$$

Proposition

There exists a poly-size NN computing f
\Leftrightarrow
The MST-Polytope can be (virtually) generated from points via polynomially many operations of the form

- Minkowski addition,
- Convex hull of the union,
- Scaling (with possibly inverting).

Thank you!

Questions? Ideas?

