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Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



Objectives of this Talk

1. Develop a geometric understanding of NNs

I [Zhang, Naitzat, Lim:
Tropical Geometry of Deep Neural Networks, ICML 2018]

I [Panina, Streinu: Virtual Polytopes, Oberwolfach Preprints 2015]

2. Translate two open problems into the polytope world:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?

(both problems have broader context ...)



A Single ReLU Neuron

x1

x2

x`

Outputs
of previous

neurons

max{0,
∑`

i=1 wixi}

w1

w2

w`

Rectified linear unit (ReLU): relu(x) = max{0, x}



A Single ReLU Neuron

x1

x2

x`

Outputs
of previous

neurons

max{0,
∑`

i=1 wixi}

w1

w2

w`

Rectified linear unit (ReLU): relu(x) = max{0, x}



A Single ReLU Neuron



ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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I Computes function

Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with linear transformations Ti .

I Example: depth 3 (2 hidden layers).
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NNs and CPWL Functions

Theorem (Arora, Basu, Mianjy, Mukherjee (ICLR 2018))

f : Rn → R can be represented by a ReLU NN if and only if f is
continuous and piecewise linear (CPWL).



Support Functions and Newton Polytopes

Definition
The support function fP of a polytope P ⊆ Rn maps a cost vector
x ∈ Rn to the objective value of the linear program maxv∈P xT v .
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The Newton polytope of a convex CPWL function
f (x) = max{vT1 x , vT2 x , . . . , vTp x} is P(f ) = conv{v1, v2, . . . , vp}.
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Bijection between Convex CPWL Functions and Polytopes

Have a bijection between these two sets:

I Convex CPWL functions Rn → R,

I Polytopes in Rn.

The bijection maps ...

I Functions to their Newton polytope f 7→ Pf ,

I Polytopes to their support function P 7→ fP .



Adding Two (Convex) CPWL Functions

max{0, x1, x2}+ max{0, x2} = max{0, x2, x1, x1 + x2, x2, 2x2}
= max{0, x1, 2x2, x1 + x2}
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I Minkowski sum: P ⊗ Q := {p + q | p ∈ P, q ∈ Q},
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The Bijection is a Semigroup Isomorphism

Pf+g = Pf ⊗ Pg ,

fP⊗Q = fP + fQ .

(Convex CPWL functions Rn → R, +)
∼=

(Polytopes in Rn, ⊗)



But not Every CPWL Function is Convex ... ?

I (CPWL functions, pointwise addition) is actually a group!

I Polytopes have no inverses w.r.t. Minkowski addition ...

I Can we do something about this?

YES!

 Virtual Polytopes!
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Remember When You Learned Mathematics ...

I Semigroup (N,+)

 group Z = {n −m | n,m ∈ N}
I Semigroup (Z \ {0}, ·)  group Q \ {0} = { ab | a, b ∈ Z \ {0}}

In the same way:

I Virtual Polytopes = {PQ = P � Q | P,Q ⊆ Rn polytopes}
(Careful: P

Q
6= P − Q = {p − q | p ∈ P, q ∈ Q})

I Remember: a
b = c

d ⇔ ad = bc

I In the same way: P
Q = R

S ⇔ P ⊗ S = Q ⊗ R

(formally via equivalence relations)
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We even have a Group Isomorphism!

(CPWL functions Rn → R, +)
∼=

(Virtual Polytopes in Rn, ⊗)

In particular:

Every CPWL function is a difference of two convex CPWL functions.

P

Q
7→ fP − fQ

f − g 7→ Pf

Pg



Virtual Polytopes are Almost Polytopes

I They have a face lattice,
I faces are virtual polytopes.

I They have a volume,
I but volume can be negative.



The General Idea

Find out which virtual polytopes

can occur as Newton polytopes of CPWL functions

computed by neural networks of a certain size (or structure).



Which Operations can NNs perform?

I Addition

↔ Minkowski addition X

I Scalar multiplication

?

I ReLU activations
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We even have a Vector Space Isomorphism!

f = maxpi=1{vTi x} ⇒ Pλf = convpi=1{λvi} = λPf

(CPWL functions, +, scalar multiplication)
∼=

(Virtual Polytopes, ⊗, scaling)

(for λ < 0 also consistent with Minkowski difference)
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Which Operations can NNs perform?

I Addition ↔ Minkowski addition X

I Scalar multiplication ↔ Scaling of (virtual) polytopes X

I Taking Maxima ?



“Maximum” for Two Virtual Polytopes

For two convex CPWL functions f and g :

Pmax{f ,g} = conv{Pf ∪ Pg} =: Pf ⊕ Pg .

For f = f+ − f− and g = g+ − g− (non-convex) CPWL functions.

⇒ max{f , g} = max{f+ − f−, g+ − g−}
= max{f+ + g−, g+ + f−} − (f− + g−).

Translating to virtual polytopes:

Pf ⊕ Pg := Pmax{f ,g}

=
(Pf+ ⊗ Pg−)⊕ (Pg+ ⊗ Pf−)

(Pf− ⊗ Pg−)

Does this remind you of something?  a
b + c

d = ad+bc
bd
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We also have a Semiring Isomorphism!

(CPWL functions, max, +)
∼=

(Virtual Polytopes, ⊕, ⊗)

(here you see the “tropical” world!)



Which Operations can NNs perform?

I Addition ↔ Minkowski addition X

I Scalar multiplication ↔ Scaling of (virtual) polytopes X

I Taking Maxima ?



Which Operations can NNs perform?

I Addition ↔ Minkowski addition X

I Scalar multiplication ↔ Scaling of (virtual) polytopes X

I Taking Maxima ↔ convex hull of the union X



Take a Breath!

Now to the two open problems:

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?



Computing the Maximum of Two Numbers

max{x , y} = max{x − y , 0}+ y
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Computing the Maximum of Four Numbers
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I Inductively: Maximum of n numbers with depth dlog2(n)e+ 1.

Question: Is this best possible?
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What’s known?

I max{0, x1, x2} cannot be computed with 2 layers.

That’s all!

I No function known that provably needs more than 3 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?
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Virtual Newton Polytopes of Neural Networks
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P1 = { Y ⊕ Z | Y , Z (virtual) zonotopes }
(convex hull of the union of two zonotopes)

P2 = { finite Minkowski sums of (virtual) polytopes in P1 }

f (x) = max{0, x1, x2, x3, x4} can be computed by 3-layer NN

⇔ 4-simplex ∆4 = Pf ∈ P2.
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The Two Open Problems

I Can 3-layer NNs compute the maximum of 5 numbers?

I Can poly-size NNs solve the MST problem?



The Minimum Spanning Tree Problem

G =

X =

{ }

Let X ⊆ {0, 1}E be the set of characteristic vectors of spanning
trees in a fixed graph G = (V ,E ).

MST problem: Compute the CPWL function

c 7→ min
x∈X

cT x .

Question: Is there a poly-size NN computing this function?
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Is there a poly-size NN to solve MST?

f (c) = min
x∈X

xT c = −max
x∈X

(−x)T c

⇒ Pf = conv{−x | x ∈ X}⊗−1 = (−MST-Polytope)⊗−1

Proposition

There exists a poly-size NN computing f

⇔

The MST-Polytope can be (virtually) generated from points via
polynomially many operations of the form

I Minkowski addition,

I Convex hull of the union,

I Scaling (with possibly inverting).
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Thank you!

 x1
0

x2


∼=


(0, 0)

(0, 1)

(1, 0)



Questions? Ideas?


