Computing the Maximum Function with ReLU Neural Networks

Christoph Hertrich Joint WIP with Amitabh Basu, Marco Di Summa, and Martin Skutella

IOL & COGA Research Seminar November 5, 2020

A Single (Hidden) ReLU Neuron

A Single (Hidden) ReLU Neuron

Rectified linear unit (ReLU): relu(x) = max{0, x}

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

Computes function T_k ∘ relu ∘ T_{k-1} ∘ · · · ∘ T₂ ∘ relu ∘ T₁ with affine transformations T_i.

ReLU Feedforward Neural Networks

Acyclic (layered) digraph of ReLU neurons

- Computes function T_k o relu o T_{k-1} o · · · o T₂ o relu o T₁ with affine transformations T_i.
- Example: depth 3 (2 hidden layers), width 3.

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Two Numbers

$$\max\{x, y\} = \max\{x - y, 0\} + y$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

lnductively: Maximum of *n* numbers with depth $\lceil \log_2(n) \rceil + 1$.

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function $f : \mathbb{R}^n \to \mathbb{R}$, there are $\alpha_i \in \mathbb{R}$, $a_{ij} \in \mathbb{R}^n$, and $b_{ij} \in \mathbb{R}$ such that

$$f(x) = \sum_{i} \alpha_i \max\{a_{ij}^T x + b_{ij} \mid j = 1, \dots, n+1\}.$$

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function $f : \mathbb{R}^n \to \mathbb{R}$, there are $\alpha_i \in \mathbb{R}$, $a_{ij} \in \mathbb{R}^n$, and $b_{ij} \in \mathbb{R}$ such that

$$f(x) = \sum_{i} \alpha_i \max\{a_{ij}^T x + b_{ij} \mid j = 1, \dots, n+1\}.$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018)) $f : \mathbb{R}^n \to \mathbb{R}$ can be computed by ReLU NN if and only if f is CPWL.

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function $f : \mathbb{R}^n \to \mathbb{R}$, there are $\alpha_i \in \mathbb{R}$, $a_{ij} \in \mathbb{R}^n$, and $b_{ij} \in \mathbb{R}$ such that

$$f(x) = \sum_{i} \alpha_i \max\{a_{ij}^T x + b_{ij} \mid j = 1, \dots, n+1\}.$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

 $f: \mathbb{R}^n \to \mathbb{R}$ can be computed by ReLU NN if and only if f is CPWL.

In this case, depth $\lceil \log_2(n+1) \rceil + 1$ suffices.

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function $f : \mathbb{R}^n \to \mathbb{R}$, there are $\alpha_i \in \mathbb{R}$, $a_{ij} \in \mathbb{R}^n$, and $b_{ij} \in \mathbb{R}$ such that

$$f(x) = \sum_{i} \alpha_i \max\{a_{ij}^T x + b_{ij} \mid j = 1, \dots, n+1\}.$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

 $f: \mathbb{R}^n \to \mathbb{R}$ can be computed by ReLU NN if and only if f is CPWL.

In this case, depth $\lceil \log_2(n+1) \rceil + 1$ suffices.

 \Rightarrow Everything depends on the maximum function!

Is logarithmic depth best possible?

• Known: $\max\{0, x_1, x_2\}$ cannot be computed with 2 layers.

Is logarithmic depth best possible?

- Known: $\max\{0, x_1, x_2\}$ cannot be computed with 2 layers.
- Smallest open case: Can max{0, x₁, x₂, x₃, x₄} be computed with 3 layers?

Is logarithmic depth best possible?

- Known: $max\{0, x_1, x_2\}$ cannot be computed with 2 layers.
- Smallest open case: Can max{0, x₁, x₂, x₃, x₄} be computed with 3 layers?
- ▶ No function known that provably needs more than 3 layers.

Computational proof that $\max\{0, x_1, x_2, x_3, x_4\}$ cannot be computed with 3 layers

Computational proof that $\max\{0, x_1, x_2, x_3, x_4\}$ cannot be computed with 3 layers **under an additional assumption**.

Computational proof that $\max\{0, x_1, x_2, x_3, x_4\}$ cannot be computed with 3 layers **under an additional assumption**.

(for notational purposes: $x_0 := 0$.)

Strategy:

Strategy:

Construct a linear program (LP) that is feasible if and only if such a neural network exists.

Rough Idea

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

• Let \tilde{f} be the function computed by the NN without bias.

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x) \tilde{f}(x)| \le C$ for all x.

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x) \tilde{f}(x)| \le C$ for all x.
- ▶ If there is an x with $f(x) \neq \tilde{f}(x)$, then αx (with large α) yields a contradiction.

• f positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x) \tilde{f}(x)| \le C$ for all x.
- ▶ If there is an x with $f(x) \neq \tilde{f}(x)$, then αx (with large α) yields a contradiction.

 \Rightarrow From now on, only consider NNs without biases.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers 0, x_1, \ldots, x_4 changes.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers 0, x_1, \ldots, x_4 changes.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers 0, x_1, \ldots, x_4 changes.

The $\binom{5}{2} = 10$ hyperplanes $x_i = x_j$, $0 \le i < j \le 4$, subdivide \mathbb{R}^4 into 5! = 120 cells in each of which the output of each neuron is affine.

- Has breaking hyperplane at $\sum_{i=1}^{4} w_i x_i = 0.$
- Must be one of the 10 specified hyperplanes.

- Has breaking hyperplane at $\sum_{i=1}^{4} w_i x_i = 0.$
- Must be one of the 10 specified hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear combination of the following 14 functions:

 $\begin{array}{ll} \max\{x_1,0\}, & \max\{x_2,0\}, & \max\{x_3,0\}, & \max\{x_4,0\}, \\ \max\{-x_1,0\}, & \max\{-x_2,0\}, & \max\{-x_3,0\}, & \max\{-x_4,0\}, \\ & \max\{x_1-x_2,0\}, & \max\{x_1-x_3,0\}, & \max\{x_1-x_4,0\}, \\ & \max\{x_2-x_3,0\}, & \max\{x_2-x_4,0\}, & \max\{x_3-x_4,0\} \end{array}$

- Has breaking hyperplane at $\sum_{i=1}^{4} w_i x_i = 0.$
- Must be one of the 10 specified hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear combination of the following 14 functions:

 $\begin{array}{ll} \max\{x_1,0\}, & \max\{x_2,0\}, & \max\{x_3,0\}, & \max\{x_4,0\}, \\ \max\{-x_1,0\}, & \max\{-x_2,0\}, & \max\{-x_3,0\}, & \max\{-x_4,0\}, \\ & \max\{x_1-x_2,0\}, & \max\{x_1-x_3,0\}, & \max\{x_1-x_4,0\}, \\ & \max\{x_2-x_3,0\}, & \max\{x_2-x_4,0\}, & \max\{x_3-x_4,0\} \end{array}$

\Rightarrow 14 neurons suffice!

Observe: WLOG output weights ± 1 .

Observe: WLOG output weights ± 1 .

Recall: cell = set of inputs with fixed ordering of 0, x_1, \ldots, x_4 .

Observe: WLOG output weights ± 1 .

Recall: cell = set of inputs with fixed ordering of 0, x_1 , ..., x_4 .

Observe: activation of neurons has fixed sign within each cell.

 \rightsquigarrow activation pattern in $\{-1,1\}^{120}$

Observe: WLOG output weights ± 1 .

Recall: cell = set of inputs with fixed ordering of 0, x_1 , ..., x_4 .

Observe: activation of neurons has fixed sign within each cell.

$$\rightarrow$$
 activation pattern in $\{-1,1\}^{120}$

Observe: neurons with equal activation pattern and equal output weight can be combined.

Observe: WLOG output weights ± 1 .

Recall: cell = set of inputs with fixed ordering of 0, x_1 , ..., x_4 .

Observe: activation of neurons has fixed sign within each cell.

$$\rightarrow$$
 activation pattern in $\{-1,1\}^{120}$

Observe: neurons with equal activation pattern and equal output weight can be combined.

$$\Rightarrow$$
 2¹²¹ neurons suffice!

2¹²¹? Are you serious?

2¹²¹? Are you serious?

- Many activation patterns impossible.
- Can use linear programming to enumerate possible patterns.

2¹²¹? Are you serious?

- Many activation patterns impossible.
- Can use linear programming to enumerate possible patterns.

 \rightsquigarrow For this talk suppose $2^{121}\approx 200\,000.$

Variables of the Linear Program

Two types of constraints:

- 1. Ensuring output correctness,
- 2. Ensuring activation patterns.

Two types of constraints:

- 1. Ensuring output correctness,
- 2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell $x_1 \ge x_2 \ge 0 \ge x_3 \ge x_4$: (1,0,0,0), (1,1,0,0), (0,0,-1,-1), (0,0,0,-1).

Two types of constraints:

- 1. Ensuring output correctness,
- 2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell $x_1 \ge x_2 \ge 0 \ge x_3 \ge x_4$:

(1,0,0,0), (1,1,0,0), (0,0,-1,-1), (0,0,0,-1).

 \Rightarrow Enough to have constraints for each extreme ray.

Two types of constraints:

- 1. Ensuring output correctness,
- 2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell $x_1 \ge x_2 \ge 0 \ge x_3 \ge x_4$:

(1,0,0,0), (1,1,0,0), (0,0,-1,-1), (0,0,0,-1).

 \Rightarrow Enough to have constraints for each extreme ray.

- \Rightarrow Have these constraints:
 - 1. $4 \cdot 120$ equality constraints.
 - 2. $4 \cdot 120 \cdot 2^{121}$ inequality constraints.

... for less than a minute ...

... for less than a minute ...

... and outputs ...

... for less than a minute ...

... and outputs ...

Infeasible!

Three Obvious Next Steps ...

Proving the assumption.

► Finding a "real" proof.

Generalize to more layers.

Thank you!

Questions? Ideas?