Computing the Maximum Function with ReLU Neural Networks

Christoph Hertrich Joint WIP with

Amitabh Basu, Marco Di Summa, and Martin Skutella

IOL \& COGA Research Seminar November 5, 2020

A Single (Hidden) ReLU Neuron

A Single (Hidden) ReLU Neuron

Rectified linear unit $(\operatorname{ReLU}): \operatorname{relu}(x)=\max \{0, x\}$

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function $T_{k} \circ$ relu $\circ T_{k-1} \circ \cdots \circ T_{2} \circ$ relu $\circ T_{1}$ with affine transformations T_{i}.

ReLU Feedforward Neural Networks

- Acyclic (layered) digraph of ReLU neurons

- Computes function $T_{k} \circ$ relu $\circ T_{k-1} \circ \cdots \circ T_{2} \circ$ relu $\circ T_{1}$ with affine transformations T_{i}.
- Example: depth 3 (2 hidden layers), width 3.

Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

- Inductively: Maximum of n numbers with depth $\left\lceil\log _{2}(n)\right\rceil+1$.

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))
For any continuous and piecewise linear (CPWL) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there are $\alpha_{i} \in \mathbb{R}, a_{i j} \in R^{n}$, and $b_{i j} \in \mathbb{R}$ such that

$$
f(x)=\sum_{i} \alpha_{i} \max \left\{a_{i j}^{T} x+b_{i j} \mid j=1, \ldots, n+1\right\}
$$

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))
For any continuous and piecewise linear (CPWL) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there are $\alpha_{i} \in \mathbb{R}, a_{i j} \in R^{n}$, and $b_{i j} \in \mathbb{R}$ such that

$$
f(x)=\sum_{i} \alpha_{i} \max \left\{a_{i j}^{T} x+b_{i j} \mid j=1, \ldots, n+1\right\} .
$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018)) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be computed by $\operatorname{ReLU} N N$ if and only if f is CPWL.

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))
For any continuous and piecewise linear (CPWL) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there are $\alpha_{i} \in \mathbb{R}, a_{i j} \in R^{n}$, and $b_{i j} \in \mathbb{R}$ such that

$$
f(x)=\sum_{i} \alpha_{i} \max \left\{a_{i j}^{T} x+b_{i j} \mid j=1, \ldots, n+1\right\} .
$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018)) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be computed by $\operatorname{ReLU} N N$ if and only if f is CPWL.
In this case, depth $\left\lceil\log _{2}(n+1)\right\rceil+1$ suffices.

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))
For any continuous and piecewise linear (CPWL) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there are $\alpha_{i} \in \mathbb{R}, a_{i j} \in R^{n}$, and $b_{i j} \in \mathbb{R}$ such that

$$
f(x)=\sum_{i} \alpha_{i} \max \left\{a_{i j}^{T} x+b_{i j} \mid j=1, \ldots, n+1\right\} .
$$

Theorem (Arora, Basu, Mianjy, Mukherjee (2018)) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be computed by ReLU NN if and only if f is CPWL. In this case, depth $\left\lceil\log _{2}(n+1)\right\rceil+1$ suffices.
\Rightarrow Everything depends on the maximum function!

Is logarithmic depth best possible?

- Known: $\max \left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.

Is logarithmic depth best possible?

- Known: $\max \left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.
- Smallest open case:

Can $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be computed with 3 layers?

Is logarithmic depth best possible?

- Known: $\max \left\{0, x_{1}, x_{2}\right\}$ cannot be computed with 2 layers.
- Smallest open case:

Can $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be computed with 3 layers?

- No function known that provably needs more than 3 layers.

In this talk:

In this talk:

Computational proof that max $\left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ cannot be computed with 3 layers

In this talk:

Computational proof that $\max \left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ cannot be computed with 3 layers under an additional assumption.

In this talk:

Computational proof that max $\left\{0, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ cannot be computed with 3 layers under an additional assumption.
(for notational purposes: $x_{0}:=0$.)

Strategy:

Strategy:

Construct a linear program (LP) that is feasible if and only if such a neural network exists.

Rough Idea

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x)-\tilde{f}(x)| \leq C$ for all x.

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x)-\tilde{f}(x)| \leq C$ for all x.
- If there is an x with $f(x) \neq \tilde{f}(x)$, then αx (with large α) yields a contradiction.

Observation: No Bias Necessary

- f positively homogeneous if $f(\alpha x)=\alpha f(x)$ for all $\alpha>0$.

Proposition

If an NN computes a positively homogeneous function f, then the same NN without biases computes the same function f.

Proof.

- Let \tilde{f} be the function computed by the NN without bias.
- There is a constant C with $|f(x)-\tilde{f}(x)| \leq C$ for all x.
- If there is an x with $f(x) \neq \tilde{f}(x)$, then αx (with large α) yields a contradiction.
\Rightarrow From now on, only consider NNs without biases.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers $0, x_{1}, \ldots, x_{4}$ changes.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers $0, x_{1}, \ldots, x_{4}$ changes.

The Assumption

The output of each neuron can only have breakpoints when the relative ordering of the five numbers $0, x_{1}, \ldots, x_{4}$ changes.

The $\binom{5}{2}=10$ hyperplanes $x_{i}=x_{j}, 0 \leq i<j \leq 4$, subdivide \mathbb{R}^{4} into $5!=120$ cells in each of which the output of each neuron is affine.

Neurons in the First Hidden Layer

Neurons in the First Hidden Layer

- Has breaking hyperplane at $\sum_{i=1}^{4} w_{i} x_{i}=0$.
- Must be one of the 10 specified hyperplanes.

Neurons in the First Hidden Layer

- Has breaking hyperplane at $\sum_{i=1}^{4} w_{i} x_{i}=0$.
- Must be one of the 10 specified hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear combination of the following 14 functions:

$$
\begin{array}{cccc}
\max \left\{x_{1}, 0\right\}, & \max \left\{x_{2}, 0\right\}, & \max \left\{x_{3}, 0\right\}, & \max \left\{x_{4}, 0\right\}, \\
\max \left\{-x_{1}, 0\right\}, & \max \left\{-x_{2}, 0\right\}, & \max \left\{-x_{3}, 0\right\}, & \max \left\{-x_{4}, 0\right\}, \\
\max \left\{x_{1}-x_{2}, 0\right\}, & \max \left\{x_{1}-x_{3}, 0\right\}, & \max \left\{x_{1}-x_{4}, 0\right\}, \\
\max \left\{x_{2}-x_{3}, 0\right\}, & \max \left\{x_{2}-x_{4}, 0\right\}, & \max \left\{x_{3}-x_{4}, 0\right\}
\end{array}
$$

Neurons in the First Hidden Layer

- Has breaking hyperplane at $\sum_{i=1}^{4} w_{i} x_{i}=0$.
- Must be one of the 10 specified hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear combination of the following 14 functions:

$$
\begin{array}{cccc}
\max \left\{x_{1}, 0\right\}, & \max \left\{x_{2}, 0\right\}, & \max \left\{x_{3}, 0\right\}, & \max \left\{x_{4}, 0\right\}, \\
\max \left\{-x_{1}, 0\right\}, & \max \left\{-x_{2}, 0\right\}, & \max \left\{-x_{3}, 0\right\}, & \max \left\{-x_{4}, 0\right\}, \\
\max \left\{x_{1}-x_{2}, 0\right\}, & \max \left\{x_{1}-x_{3}, 0\right\}, & \max \left\{x_{1}-x_{4}, 0\right\}, \\
\max \left\{x_{2}-x_{3}, 0\right\}, & \max \left\{x_{2}-x_{4}, 0\right\}, & \max \left\{x_{3}-x_{4}, 0\right\}
\end{array}
$$

Neurons in the Second Hidden Layer

Observe: WLOG output weights ± 1.

Neurons in the Second Hidden Layer

Observe: WLOG output weights ± 1.

Recall: cell $=$ set of inputs with fixed ordering of $0, x_{1}, \ldots, x_{4}$.

Neurons in the Second Hidden Layer

Observe: WLOG output weights ± 1.

Recall: cell $=$ set of inputs with fixed ordering of $0, x_{1}, \ldots, x_{4}$.
Observe: activation of neurons has fixed sign within each cell.
\rightsquigarrow activation pattern in $\{-1,1\}^{120}$

Neurons in the Second Hidden Layer

Observe: WLOG output weights ± 1.

Recall: cell $=$ set of inputs with fixed ordering of $0, x_{1}, \ldots, x_{4}$.
Observe: activation of neurons has fixed sign within each cell.
\rightsquigarrow activation pattern in $\{-1,1\}^{120}$
Observe: neurons with equal activation pattern and equal output weight can be combined.

Neurons in the Second Hidden Layer

Observe: WLOG output weights ± 1.

Recall: cell $=$ set of inputs with fixed ordering of $0, x_{1}, \ldots, x_{4}$.
Observe: activation of neurons has fixed sign within each cell.
\rightsquigarrow activation pattern in $\{-1,1\}^{120}$
Observe: neurons with equal activation pattern and equal output weight can be combined.

$$
\Rightarrow 2^{121} \text { neurons suffice! }
$$

2^{121} ? Are you serious?

2^{121} ? Are you serious?

- Many activation patterns impossible.
- Can use linear programming to enumerate possible patterns.

2^{121} ? Are you serious?

- Many activation patterns impossible.
- Can use linear programming to enumerate possible patterns.
\rightsquigarrow For this talk suppose $2^{121} \approx 200000$.

Variables of the Linear Program

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,
2. Ensuring activation patterns.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,
2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.
Example: Cell $x_{1} \geq x_{2} \geq 0 \geq x_{3} \geq x_{4}$:
$(1,0,0,0)$,
$(1,1,0,0)$,
$(0,0,-1,-1)$,
$(0,0,0,-1)$.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,
2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.
Example: Cell $x_{1} \geq x_{2} \geq 0 \geq x_{3} \geq x_{4}$:
$(1,0,0,0)$,
$(1,1,0,0)$,
$(0,0,-1,-1)$,
$(0,0,0,-1)$.
\Rightarrow Enough to have constraints for each extreme ray.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,
2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.
Example: Cell $x_{1} \geq x_{2} \geq 0 \geq x_{3} \geq x_{4}$:
$(1,0,0,0)$,
$(1,1,0,0)$,
$(0,0,-1,-1)$,
$(0,0,0,-1)$.
\Rightarrow Enough to have constraints for each extreme ray.
\Rightarrow Have these constraints:

1. $4 \cdot 120$ equality constraints.
2. $4 \cdot 120 \cdot 2^{121}$ inequality constraints.

Gurobi computes

Gurobi computes

... for less than a minute

Gurobi computes ...

... for less than a minute ...
... and outputs ...

Gurobi computes ...

... for less than a minute ...
... and outputs ...

Infeasible!

Three Obvious Next Steps ...

- Proving the assumption.
- Finding a "real" proof.
- Generalize to more layers.

Thank you!

Questions? Ideas?

