
Computing the Maximum Function
with ReLU Neural Networks

Christoph Hertrich
Joint WIP with

Amitabh Basu, Marco Di Summa, and Martin Skutella

IOL & COGA Research Seminar
November 5, 2020

A Single (Hidden) ReLU Neuron

bv

Outputs
o(ui) of
previous
neurons

o(v) = relu(bv +
∑`

i=1 wui vo(ui))

wu1v

wu2v

wu`v

Rectified linear unit (ReLU): relu(x) = max{0, x}

A Single (Hidden) ReLU Neuron

bv

Outputs
o(ui) of
previous
neurons

o(v) = relu(bv +
∑`

i=1 wui vo(ui))

wu1v

wu2v

wu`v

Rectified linear unit (ReLU): relu(x) = max{0, x}

ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons

x1

x2

y1

y2

y3

T1 T2 T3

I Computes function Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with affine transformations Ti .

I Example: depth 3 (2 hidden layers), width 3.

ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons

x1

x2

y1

y2

y3

T1 T2 T3

I Computes function Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with affine transformations Ti .

I Example: depth 3 (2 hidden layers), width 3.

ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons

x1

x2

y1

y2

y3

T1 T2 T3

I Computes function Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with affine transformations Ti .

I Example: depth 3 (2 hidden layers), width 3.

Example: Computing the Maximum of Two Numbers

max{x , y} = max{x − y , 0}+ y

x

y
m

1
1

-1

1

1

-1
1

-1

Example: Computing the Maximum of Two Numbers

max{x , y} = max{x − y , 0}+ y

x

y
m

1
1

-1

1

1

-1
1

-1

Example: Computing the Maximum of Four Numbers

x1

x2

x3

x4

m

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

I Inductively: Maximum of n numbers with depth dlog2(n)e+ 1.

Example: Computing the Maximum of Four Numbers

x1

x2

x3

x4

m

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

I Inductively: Maximum of n numbers with depth dlog2(n)e+ 1.

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function
f : Rn → R, there are αi ∈ R, aij ∈ Rn, and bij ∈ R such that

f (x) =
∑
i

αi max{aTij x + bij | j = 1, . . . , n + 1}.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be computed by ReLU NN if and only if f is
CPWL.

In this case, depth dlog2(n + 1)e+ 1 suffices.

⇒ Everything depends on the maximum function!

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function
f : Rn → R, there are αi ∈ R, aij ∈ Rn, and bij ∈ R such that

f (x) =
∑
i

αi max{aTij x + bij | j = 1, . . . , n + 1}.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be computed by ReLU NN if and only if f is
CPWL.

In this case, depth dlog2(n + 1)e+ 1 suffices.

⇒ Everything depends on the maximum function!

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function
f : Rn → R, there are αi ∈ R, aij ∈ Rn, and bij ∈ R such that

f (x) =
∑
i

αi max{aTij x + bij | j = 1, . . . , n + 1}.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be computed by ReLU NN if and only if f is
CPWL.

In this case, depth dlog2(n + 1)e+ 1 suffices.

⇒ Everything depends on the maximum function!

Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function
f : Rn → R, there are αi ∈ R, aij ∈ Rn, and bij ∈ R such that

f (x) =
∑
i

αi max{aTij x + bij | j = 1, . . . , n + 1}.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be computed by ReLU NN if and only if f is
CPWL.

In this case, depth dlog2(n + 1)e+ 1 suffices.

⇒ Everything depends on the maximum function!

Is logarithmic depth best possible?

I Known: max{0, x1, x2} cannot be computed with 2 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?

I No function known that provably needs more than 3 layers.

Is logarithmic depth best possible?

I Known: max{0, x1, x2} cannot be computed with 2 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?

I No function known that provably needs more than 3 layers.

Is logarithmic depth best possible?

I Known: max{0, x1, x2} cannot be computed with 2 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?

I No function known that provably needs more than 3 layers.

In this talk:

Computational proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

(for notational purposes: x0 := 0.)

In this talk:

Computational proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

(for notational purposes: x0 := 0.)

In this talk:

Computational proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

(for notational purposes: x0 := 0.)

In this talk:

Computational proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

(for notational purposes: x0 := 0.)

Strategy:

Construct a linear program (LP)

that is feasible if and only if

such a neural network exists.

Strategy:

Construct a linear program (LP)

that is feasible if and only if

such a neural network exists.

Rough Idea

x1

x2

x3

x4
b
o
u
n
d
ed

n
u
m
b
er

o
f
n
eu

ro
n
s

b
o
u
n
d
ed

n
u
m
b
er

o
f
n
eu

ro
n
s

fixed
weights LP

variables

fixed
weights

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.

The Assumption

The output of each neuron can only have breakpoints when the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2

The
(5
2

)
= 10 hyperplanes xi = xj , 0 ≤ i < j ≤ 4, subdivide R4 into

5! = 120 cells in each of which the output of each neuron is affine.

The Assumption

The output of each neuron can only have breakpoints when the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2

The
(5
2

)
= 10 hyperplanes xi = xj , 0 ≤ i < j ≤ 4, subdivide R4 into

5! = 120 cells in each of which the output of each neuron is affine.

The Assumption

The output of each neuron can only have breakpoints when the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2

The
(5
2

)
= 10 hyperplanes xi = xj , 0 ≤ i < j ≤ 4, subdivide R4 into

5! = 120 cells in each of which the output of each neuron is affine.

Neurons in the First Hidden Layer

x1

x2

x3

x4

w1

w2

w3

w4

I Has breaking hyperplane at∑4
i=1 wixi = 0.

I Must be one of the 10 specified
hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear
combination of the following 14 functions:

max{x1, 0}, max{x2, 0}, max{x3, 0}, max{x4, 0},
max{−x1, 0}, max{−x2, 0}, max{−x3, 0}, max{−x4, 0},

max{x1 − x2, 0}, max{x1 − x3, 0}, max{x1 − x4, 0},
max{x2 − x3, 0}, max{x2 − x4, 0}, max{x3 − x4, 0}

⇒ 14 neurons suffice!

Neurons in the First Hidden Layer

x1

x2

x3

x4

w1

w2

w3

w4

I Has breaking hyperplane at∑4
i=1 wixi = 0.

I Must be one of the 10 specified
hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear
combination of the following 14 functions:

max{x1, 0}, max{x2, 0}, max{x3, 0}, max{x4, 0},
max{−x1, 0}, max{−x2, 0}, max{−x3, 0}, max{−x4, 0},

max{x1 − x2, 0}, max{x1 − x3, 0}, max{x1 − x4, 0},
max{x2 − x3, 0}, max{x2 − x4, 0}, max{x3 − x4, 0}

⇒ 14 neurons suffice!

Neurons in the First Hidden Layer

x1

x2

x3

x4

w1

w2

w3

w4

I Has breaking hyperplane at∑4
i=1 wixi = 0.

I Must be one of the 10 specified
hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear
combination of the following 14 functions:

max{x1, 0}, max{x2, 0}, max{x3, 0}, max{x4, 0},
max{−x1, 0}, max{−x2, 0}, max{−x3, 0}, max{−x4, 0},

max{x1 − x2, 0}, max{x1 − x3, 0}, max{x1 − x4, 0},
max{x2 − x3, 0}, max{x2 − x4, 0}, max{x3 − x4, 0}

⇒ 14 neurons suffice!

Neurons in the First Hidden Layer

x1

x2

x3

x4

w1

w2

w3

w4

I Has breaking hyperplane at∑4
i=1 wixi = 0.

I Must be one of the 10 specified
hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear
combination of the following 14 functions:

max{x1, 0}, max{x2, 0}, max{x3, 0}, max{x4, 0},
max{−x1, 0}, max{−x2, 0}, max{−x3, 0}, max{−x4, 0},

max{x1 − x2, 0}, max{x1 − x3, 0}, max{x1 − x4, 0},
max{x2 − x3, 0}, max{x2 − x4, 0}, max{x3 − x4, 0}

⇒ 14 neurons suffice!

Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
·

w1

w14

±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!

Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
·

w1

w14

±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!

Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
·

w1

w14

±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!

Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
·

w1

w14

±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!

Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
·

w1

w14

±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!

2121? Are you serious?

I Many activation patterns impossible.

I Can use linear programming to enumerate possible patterns.

 For this talk suppose 2121 ≈ 200 000.

2121? Are you serious?

I Many activation patterns impossible.

I Can use linear programming to enumerate possible patterns.

 For this talk suppose 2121 ≈ 200 000.

2121? Are you serious?

I Many activation patterns impossible.

I Can use linear programming to enumerate possible patterns.

 For this talk suppose 2121 ≈ 200 000.

Variables of the Linear Program

x1

x2

x3

x4
1

4
n

eu
ro

n
s

2
1
2
1

n
eu

ro
n

s

fixed weights
in {0,±1} 14 · 2121

LP variables

fixed weights
in {±1}

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,

2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell x1 ≥ x2 ≥ 0 ≥ x3 ≥ x4:

(1, 0, 0, 0), (1, 1, 0, 0), (0, 0,−1,−1), (0, 0, 0,−1).

⇒ Enough to have constraints for each extreme ray.

⇒ Have these constraints:

1. 4 · 120 equality constraints.

2. 4 · 120 · 2121 inequality constraints.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,

2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell x1 ≥ x2 ≥ 0 ≥ x3 ≥ x4:

(1, 0, 0, 0), (1, 1, 0, 0), (0, 0,−1,−1), (0, 0, 0,−1).

⇒ Enough to have constraints for each extreme ray.

⇒ Have these constraints:

1. 4 · 120 equality constraints.

2. 4 · 120 · 2121 inequality constraints.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,

2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell x1 ≥ x2 ≥ 0 ≥ x3 ≥ x4:

(1, 0, 0, 0), (1, 1, 0, 0), (0, 0,−1,−1), (0, 0, 0,−1).

⇒ Enough to have constraints for each extreme ray.

⇒ Have these constraints:

1. 4 · 120 equality constraints.

2. 4 · 120 · 2121 inequality constraints.

Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,

2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell x1 ≥ x2 ≥ 0 ≥ x3 ≥ x4:

(1, 0, 0, 0), (1, 1, 0, 0), (0, 0,−1,−1), (0, 0, 0,−1).

⇒ Enough to have constraints for each extreme ray.

⇒ Have these constraints:

1. 4 · 120 equality constraints.

2. 4 · 120 · 2121 inequality constraints.

Gurobi computes ...

... for less than a minute ...

... and outputs ...

Infeasible!

Gurobi computes ...

... for less than a minute ...

... and outputs ...

Infeasible!

Gurobi computes ...

... for less than a minute ...

... and outputs ...

Infeasible!

Gurobi computes ...

... for less than a minute ...

... and outputs ...

Infeasible!

Three Obvious Next Steps ...

I Proving the assumption.

I Finding a “real” proof.

I Generalize to more layers.

Thank you!

x1

x2

x3

x4
1

4
n

eu
ro

n
s

2
1
2
1

n
eu

ro
n

s

fixed weights
in {0,±1} 14 · 2121

LP variables

fixed weights
in {±1}

Questions? Ideas?

