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ReLU Feedforward Neural Networks

I Acyclic (layered) digraph of ReLU neurons
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I Computes function Tk ◦ relu ◦ Tk−1 ◦ · · · ◦ T2 ◦ relu ◦ T1

with affine transformations Ti .

I Example: depth 3 (2 hidden layers), width 3.
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Example: Computing the Maximum of Two Numbers
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Example: Computing the Maximum of Four Numbers

x1

x2

x3

x4

m

1

1

-1

1

1

-1

1

1

-1

1

-1

1

-1 1

-1

1

-11

-1

1

-1

I Inductively: Maximum of n numbers with depth dlog2(n)e+ 1.
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Expressivity of ReLU neural networks

Theorem (Wang, Sun (2005))

For any continuous and piecewise linear (CPWL) function
f : Rn → R, there are αi ∈ R, aij ∈ Rn, and bij ∈ R such that

f (x) =
∑
i

αi max{aTij x + bij | j = 1, . . . , n + 1}.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

f : Rn → R can be computed by ReLU NN if and only if f is
CPWL.

In this case, depth dlog2(n + 1)e+ 1 suffices.

⇒ Everything depends on the maximum function!
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Is logarithmic depth best possible?

I Known: max{0, x1, x2} cannot be computed with 2 layers.

I Smallest open case:
Can max{0, x1, x2, x3, x4} be computed with 3 layers?

I No function known that provably needs more than 3 layers.
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In this talk:

Computational proof that max{0, x1, x2, x3, x4}
cannot be computed with 3 layers

under an additional assumption.

(for notational purposes: x0 := 0.)
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Strategy:

Construct a linear program (LP)

that is feasible if and only if

such a neural network exists.
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Observation: No Bias Necessary

I f positively homogeneous if f (αx) = αf (x) for all α > 0.

Proposition

If an NN computes a positively homogeneous function f , then the
same NN without biases computes the same function f .

Proof.

I Let f̃ be the function computed by the NN without bias.

I There is a constant C with |f (x)− f̃ (x)| ≤ C for all x .

I If there is an x with f (x) 6= f̃ (x), then αx (with large α)
yields a contradiction.

⇒ From now on, only consider NNs without biases.
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The Assumption

The output of each neuron can only have breakpoints when the
relative ordering of the five numbers 0, x1, . . . , x4 changes.

Example for
max{0, x1, x2}:

x1 ≥ x2 ≥ 0

0 ≥ x2 ≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1
≥ 0

0 ≥
x1 ≥ x2

The
(5
2

)
= 10 hyperplanes xi = xj , 0 ≤ i < j ≤ 4, subdivide R4 into

5! = 120 cells in each of which the output of each neuron is affine.
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Neurons in the First Hidden Layer
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I Has breaking hyperplane at∑4
i=1 wixi = 0.

I Must be one of the 10 specified
hyperplanes.

Claim: The output of a neuron in the first hidden layer is a linear
combination of the following 14 functions:

max{x1, 0}, max{x2, 0}, max{x3, 0}, max{x4, 0},
max{−x1, 0}, max{−x2, 0}, max{−x3, 0}, max{−x4, 0},

max{x1 − x2, 0}, max{x1 − x3, 0}, max{x1 − x4, 0},
max{x2 − x3, 0}, max{x2 − x4, 0}, max{x3 − x4, 0}

⇒ 14 neurons suffice!
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Neurons in the Second Hidden Layer

Observe: WLOG output weights ±1.

output··
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±1

Recall: cell = set of inputs with fixed ordering of 0, x1, . . . , x4.

Observe: activation of neurons has fixed sign within each cell.

 activation pattern in {−1, 1}120

Observe: neurons with equal activation pattern and equal output
weight can be combined.

⇒ 2121 neurons suffice!
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2121? Are you serious?

I Many activation patterns impossible.

I Can use linear programming to enumerate possible patterns.

 For this talk suppose 2121 ≈ 200 000.
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Variables of the Linear Program
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Constraints of the Linear Program

Two types of constraints:

1. Ensuring output correctness,

2. Ensuring activation patterns.

Observe: Each cell is conic combination of 4 extreme rays.

Example: Cell x1 ≥ x2 ≥ 0 ≥ x3 ≥ x4:

(1, 0, 0, 0), (1, 1, 0, 0), (0, 0,−1,−1), (0, 0, 0,−1).

⇒ Enough to have constraints for each extreme ray.

⇒ Have these constraints:

1. 4 · 120 equality constraints.

2. 4 · 120 · 2121 inequality constraints.
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Three Obvious Next Steps ...

I Proving the assumption.

I Finding a “real” proof.

I Generalize to more layers.



Thank you!
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Questions? Ideas?


