Improved Bounds on the Competetitive Ratio for Symmetric Rendezvous-on-the-Line with Unkown Initial Distancee

some more WIP by Guillaume, Khai Van, Martin and Max

12.11.2020

COGA Research Seminar

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rendezvous-on-the-Line w/ Unknown Distance

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Two robots are positioned on the real line at points -d and d with $d \in \mathbb{R}_+$ unknown.

Rendezvous-on-the-Line w/ Unknown Distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two robots are positioned on the real line at points -d and d with $d \in \mathbb{R}_+$ unknown.

They can each distinguish "forwards" and "backwards" but do not necessarily share the same orientation.

Rendezvous-on-the-Line w/ Unknown Distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two robots are positioned on the real line at points -d and d with $d \in \mathbb{R}_+$ unknown.

They can each distinguish "forwards" and "backwards" but do not necessarily share the same orientation.

They move over the line with speed 1 and want to minimize their expected meeting time. (more specifically: the competitive ratio)

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ with f(0) = 0 and $|f(x) - f(y)| \le |x - y|$.

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ with f(0) = 0 and $|f(x) - f(y)| \leq |x - y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A pure movement strategy is a Lipschitz-continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ with f(0) = 0 and $|f(x) - f(y)| \le |x - y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

In the Symmetric Rendezvous-on-the-Line both robots have to choose the same mixed strategy.

A pure movement strategy is a Lipschitz-continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ with f(0) = 0 and $|f(x) - f(y)| \le |x - y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

In the Symmetric Rendezvous-on-the-Line both robots have to choose the same mixed strategy.

Our goal is to give bounds on the best possible competitive ratio.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap

Baston and Gal26,66Ozsoyeller, Beveridge and Isler24,84

Cowpath

÷

4,591

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

÷

Recap

Baston and Gal	26,66
Ozsoyeller, Beveridge and Isler	24,84
Zig-Zag	20.86
Biased Zig-Zag	19,98
"Markov" Zig-Zag	18,96
"Markov" Zig	17,48
"Markov" Zig with Magnets	16,84
÷	÷
2D-Rendezvous with l_1 -norm	9,182
Cowpath	4,591

Research Questions

Quantify how "zig-zag" almost smooths over the worst-case

- Prove an upper bounds for one of those strategies
- Find a simpler 17-competitive strategy

Research Questions

Quantify how "zig-zag" almost smooths over the worst-case

- Prove an upper bounds for one of those strategies
- Find a simpler 17-competitive strategy

Fix scaling factor α .

Fix scaling factor α .

During iteration $i\in\mathbb{Z}$ a robot moves to position $\pm\alpha^i$ and then back to 0, i.e.

$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right) + \alpha^i\right) = \pm \alpha^i$$
$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right)\right) = 0$$

(ロ)、(型)、(E)、(E)、 E) の(()

Fix scaling factor α .

During iteration $i \in \mathbb{Z}$ a robot moves to position $\pm \alpha^i$ and then back to 0, i.e.

$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right) + \alpha^i\right) = \pm \alpha^i$$
$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right)\right) = 0$$

f is Lipschitz-contiuous at 0.

Fix scaling factor α .

During iteration $i \in \mathbb{Z}$ a robot moves to position $\pm \alpha^i$ and then back to 0, i.e.

$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right) + \alpha^i\right) = \pm \alpha^i$$
$$f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^k\right)\right) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

f is Lipschitz-contiuous at 0.

Choose between α^i and $-\alpha^i$ with a fair coin flip.

Fix scaling factor α and switching probability ${\it p}$

(ロ)、(型)、(E)、(E)、 E) の(()

Fix scaling factor $\alpha = 1,16$ and switching probability p = 0,6.

Fix scaling factor $\alpha = 1, 16$ and switching probability p = 0, 6.

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_i = \pm \alpha^i$.

Fix scaling factor $\alpha = 1, 16$ and switching probability p = 0, 6.

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_i = \pm \alpha^i$.

For the next iteration $f_{i+1} = -\alpha \cdot f_i$ with propability *p*.

Biased "Spiral"

W.l.o.g. $d=\alpha^{-1+\varepsilon}$, so iteration 0 is the first time the robots can meet.

W.l.o.g. $d=\alpha^{-1+\varepsilon},$ so iteration 0 is the first time the robots can meet.

For each iteration starting with 0 we track the fraction of the robots:

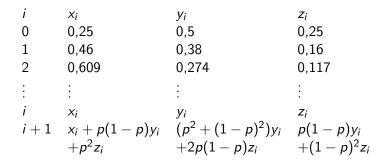
- x) going towards each other (and thus meeting)
- y) running in parallel
- z) going away from each other

i	Xi	Уi	Zi
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
:	:	÷	:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

i	Xi	Уi	Zi
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
÷	÷	÷	÷
i	Xi	Уi	Zi

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(ロ)、(型)、(E)、(E)、 E) の(()

Define generating functions $\bar{X} := X(t) := \sum_{i=0}^{\infty} x_i t^i$

Define generating functions $\bar{X} := X(t) := \sum_{i=0}^{\infty} x_i t^i$, \bar{Y} , \bar{Z} .

Define generating functions $\bar{X} := X(t) := \sum_{i=0}^{\infty} x_i t^i$, \bar{Y} , \bar{Z} .

$$\bar{X} = \bar{X}t + p(1-p)\bar{Y}t + p^2\bar{Z}t + 0,25$$

Generating Functions

Define generating functions $\bar{X} := X(t) := \sum_{i=0}^{\infty} x_i t^i$, \bar{Y} , \bar{Z} .

$$ar{X} = ar{X}t + p(1-p)ar{Y}t + p^2ar{Z}t + rac{1}{4} \ ar{Y} = (p^2 + (1-p)^2)ar{Y}t + 2p(1-p)ar{Z}t + rac{1}{2} \ ar{Z} = p(1-p)ar{Y}t + (1-p)^2ar{Z}t + rac{1}{4} \ ar{Y} = (1-p)ar{Y}t + (1-p)^2ar{Z}t + rac{1}{4} \ ar{Y} = p(1-p)ar{Y}t + (1-p)^2ar{Z}t + rac{1}{4} \ ar{Y} = b(1-p)ar{Y}t + b($$

Generating Functions

Define generating functions $\bar{X} := X(t) := \sum_{i=0}^{\infty} x_i t^i$, \bar{Y} , \bar{Z} .

$$ar{X} = ar{X}t + p(1-p)ar{Y}t + p^2ar{Z}t + ar{1}{4}$$
 $ar{Y} = (p^2 + (1-p)^2)ar{Y}t + 2p(1-p)ar{Z}t + ar{1}{2}$
 $ar{Z} = p(1-p)ar{Y}t + (1-p)^2ar{Z}t + ar{1}{4}$

$$ar{Y}(t) = rac{rac{1}{4-4(1-p)^2t}+rac{1}{2}}{1-p^2-(1-p)^2t+rac{2p^2(1-p)^2t}{1-(1-p)^2t}}$$

i	Xi	Уi	Zi
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
÷	÷	÷	÷

$$ar{Y}(t) = \sum_{i=0}^{\infty} y_i t^i = rac{rac{1}{4-4(1-p)^2 t} + rac{1}{2}}{1-p^2 - (1-p)^2 t + rac{2p^2(1-p)^2 t}{1-(1-p)^2 t}}$$

i	Xi	Уi	Zi
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
÷	÷	÷	÷

$$\bar{Y}(t) = \sum_{i=0}^{\infty} y_i t^i = \frac{\frac{1}{4-4(1-p)^2 t} + \frac{1}{2}}{1-p^2 - (1-p)^2 t + \frac{2p^2(1-p)^2 t}{1-(1-p)^2 t}}$$

$$CR(\alpha; p) = \sum_{-\infty}^{0} 2\alpha^{i} + 1 + \alpha \sum_{0}^{\infty} 2y_{i}\alpha^{i} + \alpha \sum_{0}^{\infty} 2z_{i}\alpha^{i}$$

$$CR(\alpha; p) = \sum_{-\infty}^{0} 2\alpha^{i} + 1 + \alpha \sum_{0}^{\infty} 2y_{i}\alpha^{i} + \alpha \sum_{0}^{\infty} 2z_{i}\alpha^{i}$$

$$CR(\alpha; p) = \sum_{-\infty}^{0} 2\alpha^{i} + 1 + \alpha \sum_{0}^{\infty} 2y_{i}\alpha^{i} + \alpha \sum_{0}^{\infty} 2z_{i}\alpha^{i}$$
$$= \frac{2}{1 - \frac{1}{\alpha}} + 1 + 2\alpha \bar{Y}(\alpha) + 2\alpha \bar{Z}(\alpha)$$

$$CR(\alpha; p) = \sum_{-\infty}^{0} 2\alpha^{i} + 1 + \alpha \sum_{0}^{\infty} 2y_{i}\alpha^{i} + \alpha \sum_{0}^{\infty} 2z_{i}\alpha^{i}$$
$$= \frac{2}{1 - \frac{1}{\alpha}} + 1 + 2\alpha \bar{Y}(\alpha) + 2\alpha \bar{Z}(\alpha)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We can achieve competitive ratio $CR(1, 16; 0, 6) \approx 26, 33$

Proof Pattern

- 1. Determine possible worst case starting distances
- 2. Compute the stationary distribution of the markov chain
- 3. Determine generating functions for all markov states
- 4. Resolve everything to determine the exact competitive ratio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_i = \pm \alpha^i$ and stores its last *b* choices.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_i = \pm \alpha^i$ and stores its last *b* choices.

For each choice history $h \in \{-1, +1\}^b$ we go to $f_{i+1} = -\alpha \cdot f_i$ with propability p_h .

Proof Pattern

- 1. Determine possible worst case starting distances
- 2. Compute the stationary distribution of the markov chain
- 3. Determine generating functions for all markov states
- 4. Resolve everything to determine the exact competitive ratio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix all "choices" in advance.

Fix all "choices" in advance.

For consecutive visits to the same side, "bend" the path outwards.

Proof Pattern

- 1. Determine possible worst case starting distances
- 2. Compute the stationary distribution of the markov chain
- 3. Determine generating functions for all markov states
- 4. Resolve everything to determine the exact competitive ratio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Markov Spiral

Choosing $\alpha = 1,205$, b = 5 and

$$p = (1.00, 1.00, 1.00, 1.00, 1.00, 0.59, 1.00, 0.00, 1.00, 0.25, 0.78, 0.44, 1.00, 0.09, 0.53, 0.00, 1.00, 0.00, 0.42, 1.00, 1.00, 0.31, 1.00, 0.00, 1.00, 0.29, 0.33, 0.50, 1.00, 0.59, 0.00, 0.00)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

yields a 17, 48-competitive strategy.

Markov Spiral

Choosing $\alpha = 1,205$, b = 5 and

p = (1.00, 1.00, 1.00, 1.00, 1.00, 0.59, 1.00, 0.00, 1.00, 0.25, 0.78, 0.44, 1.00, 0.09, 0.53, 0.00, 1.00, 0.00, 0.42, 1.00, 1.00, 0.31, 1.00, 0.00, 1.00, 0.29, 0.33, 0.50, 1.00, 0.59, 0.00, 0.00)

yields a 17, 48-competitive strategy.

Recap

Baston and Gal	26,66
Biased "Spiral"	26,33
Ozsoyeller, Beveridge and Isler	24,84
Zig-Zag	20.86
Biased Zig-Zag	19,98
"Markov" Zig-Zag	18,96
"Markov" Zig	17,48
Markov Spiral	17,48
"Markov" Zig with Magnets	16,84
:	÷
2D-Rendezvous with <i>I</i> 1-norm	9,182
Cowpath	4,591