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Rendezvous-on-the-Line w/ Unknown Distance

Two robots are positioned on the real line at points −d and d with
d ∈ R+ unknown.

They can each distinguish “forwards” and “backwards” but do not
necessarily share the same orientation.

They move over the line with speed 1 and want to minimize their
expected meeting time. (more specifically: the competitive ratio)
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Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function
f : R≥0 → R with f (0) = 0 and |f (x)− f (y)| ≤ |x − y |.

A mixed movement strategy is a probability distribution over pure
movement strategies.

In the Symmetric Rendezvous-on-the-Line both robots have to
choose the same mixed strategy.

Our goal is to give bounds on the best possible competitive ratio.
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Recap

Baston and Gal 26,66
Ozsoyeller, Beveridge and Isler 24,84
Zig-Zag 20.86
Biased Zig-Zag 19,98
“Markov” Zig-Zag 18,96

...
...

“Markov” Zig 17,48
“Markov” Zig with Magnets 17,22
2D-Rendezvous with l1-norm 9,182
Cowpath 4,591
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Research Questions

I Quantify how “zig-zag” almost smooths over the worst-case
I Prove an upper bounds for one of those strategies
I Find a simpler 17-competitive strategy
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Naive “Spiral”

Fix scaling factor α.

During iteration i ∈ Z a robot moves to position ±αi and then
back to 0, i.e.

f

 i−1∑
k=−∞

2 · αk

 + αi

 = ±αi

f

 i−1∑
k=−∞

2 · αk

  = 0

f is Lipschitz-contiuous at 0.

Choose between αi and −αi with a fair coin flip.
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Biased “Spiral”

Fix scaling factor α and switching probability p

α = 1, 16 and
switching probability p = 0, 6.

During iteration i ∈ Z a robot moves to position fi = ±αi .

For the next iteration fi+1 = −α · fi with propability p.
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Biased “Spiral”

W.l.o.g. d = α−1+ε, so iteration 0 is the first time the robots can
meet.

For each iteration starting with 0 we track the fraction of the
robots:
x) going towards each other (and thus meeting)
y) running in parallel
z) going away from each other
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Distribution over Markov States

i xi yi zi
0 0,25 0,5 0,25
1 0,46 0,38 0,16
2 0,609 0,274 0,117
...

...
...

...

i xi yi zi
i + 1 xi + p(1− p)yi (p2 + (1− p)2)yi p(1− p)yi

+p2zi +2p(1− p)zi +(1− p)2zi

Define generating functions X̄ := X (t) :=
∑∞

i=0 xi t i , Ȳ , Z̄ .

X̄ = X̄ t + p(1− p)Ȳ t + p2Z̄ t + 0, 25
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X̄ = X̄ t + p(1− p)Ȳ t + p2Z̄ t + 0, 25



Distribution over Markov States

i xi yi zi
0 0,25 0,5 0,25
1 0,46 0,38 0,16
2 0,609 0,274 0,117
...

...
...

...
i xi yi zi
i + 1 xi + p(1− p)yi (p2 + (1− p)2)yi p(1− p)yi

+p2zi +2p(1− p)zi +(1− p)2zi

Define generating functions X̄ := X (t) :=
∑∞

i=0 xi t i , Ȳ , Z̄ .
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Z̄ = p(1− p)Ȳ t+ (1− p)2Z̄ t + 1
4
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Computing the Competitive Ratio

CR(α; p) =
0∑
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2yiα
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∞∑
0
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i

= 2
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α
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We can achieve competitive ratio CR(1, 16; 0, 6) ≈ 26, 33



Proof Pattern

1. Determine possible worst case starting distances
2. Compute the stationary distribution of the markov chain
3. Determine generating functions for all markov states
4. Resolve everything to determine the exact competitive ratio



Markov “Spiral”

Fix scaling factor α, a memory depth of b bits and
markov transition probabilities p ∈ [0, 1]b

During iteration i ∈ Z a robot moves to position fi = ±αi and
stores its last b choices.

For each choice history h ∈ {−1,+1}b we go to fi+1 = −α · fi with
propability ph.
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Markov Spiral

Choosing α = 1, 205, b = 5 and

p = (1.00, 1.00, 1.00, 1.00, 1.00, 0.59, 1.00, 0.00,

1.00, 0.25, 0.78, 0.44, 1.00, 0.09, 0.53, 0.00,
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