Improved Bounds on the Competetitive Ratio for Symmetric Rendezvous-on-the-Line with Unkown Initial Distancee

some more WIP by Guillaume, Khai Van, Martin and Max

$$
12.11 .2020
$$

COGA Research Seminar

Rendezvous-on-the-Line w/ Unknown Distance

Two robots are positioned on the real line at points $-d$ and d with $d \in \mathbb{R}_{+}$unknown.

Rendezvous-on-the-Line w/ Unknown Distance

Two robots are positioned on the real line at points $-d$ and d with $d \in \mathbb{R}_{+}$unknown.

They can each distinguish "forwards" and "backwards" but do not necessarily share the same orientation.

Rendezvous-on-the-Line w/ Unknown Distance

Two robots are positioned on the real line at points $-d$ and d with $d \in \mathbb{R}_{+}$unknown.

They can each distinguish "forwards" and "backwards" but do not necessarily share the same orientation.

They move over the line with speed 1 and want to minimize their expected meeting time. (more specifically: the competitive ratio)

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ with $f(0)=0$ and $|f(x)-f(y)| \leq|x-y|$.

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ with $f(0)=0$ and $|f(x)-f(y)| \leq|x-y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ with $f(0)=0$ and $|f(x)-f(y)| \leq|x-y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

In the Symmetric Rendezvous-on-the-Line both robots have to choose the same mixed strategy.

Symmetric Rendezvous-on-the-Line w/ Unknown Distance

A pure movement strategy is a Lipschitz-continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ with $f(0)=0$ and $|f(x)-f(y)| \leq|x-y|$.

A mixed movement strategy is a probability distribution over pure movement strategies.

In the Symmetric Rendezvous-on-the-Line both robots have to choose the same mixed strategy.

Our goal is to give bounds on the best possible competitive ratio.

Recap

Baston and Gal
26,66
Ozsoyeller, Beveridge and Isler 24,84

Cowpath
4,591

Recap

Baston and Gal	$\mathbf{2 6 , 6 6}$
Ozsoyeller, Beveridge and Isler	$\mathbf{2 4 , 8 4}$
Zig-Zag	20.86
Biased Zig-Zag	19,98
"Markov" Zig-Zag	18,96
"Markov" Zig	17,48
"Markov" Zig with Magnets	16,84
\vdots	\vdots
2D-Rendezvous with I $_{1}$-norm	$\mathbf{9 , 1 8 2}$
Cowpath	$\mathbf{4 , 5 9 1}$

Research Questions

- Quantify how "zig-zag" almost smooths over the worst-case
- Prove an upper bounds for one of those strategies
- Find a simpler 17-competitive strategy

Research Questions

- Quantify how "zig-zag" almost smooths over the worst-case
- Prove an upper bounds for one of those strategies
- Find a simpler 17-competitive strategy

Naive "Spiral"

Fix scaling factor α.

Naive "Spiral"

Fix scaling factor α.
During iteration $i \in \mathbb{Z}$ a robot moves to position $\pm \alpha^{i}$ and then back to 0, i.e.

$$
\begin{aligned}
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)+\alpha^{i}\right)= \pm \alpha^{i} \\
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)\right)=0
\end{aligned}
$$

Naive "Spiral"

Fix scaling factor α.
During iteration $i \in \mathbb{Z}$ a robot moves to position $\pm \alpha^{i}$ and then back to 0, i.e.

$$
\begin{aligned}
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)+\alpha^{i}\right)= \pm \alpha^{i} \\
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)\right)=0
\end{aligned}
$$

f is Lipschitz-contiuous at 0 .

Naive "Spiral"

Fix scaling factor α.
During iteration $i \in \mathbb{Z}$ a robot moves to position $\pm \alpha^{i}$ and then back to 0, i.e.

$$
\begin{aligned}
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)+\alpha^{i}\right)= \pm \alpha^{i} \\
& f\left(\left(\sum_{k=-\infty}^{i-1} 2 \cdot \alpha^{k}\right)\right)=0
\end{aligned}
$$

f is Lipschitz-contiuous at 0 .
Choose between α^{i} and $-\alpha^{i}$ with a fair coin flip.

Biased "Spiral"

Fix scaling factor α and switching probability p

Biased "Spiral"

Fix scaling factor $\alpha=1,16$ and switching probability $p=0,6$.

Biased "Spiral"

Fix scaling factor $\alpha=1,16$ and switching probability $p=0,6$.

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_{i}= \pm \alpha^{i}$.

Biased "Spiral"

Fix scaling factor $\alpha=1,16$ and switching probability $p=0,6$.

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_{i}= \pm \alpha^{i}$.

For the next iteration $f_{i+1}=-\alpha \cdot f_{i}$ with propability p.

Biased "Spiral"

W.I.o.g. $d=\alpha^{-1+\varepsilon}$, so iteration 0 is the first time the robots can meet.

Biased "Spiral"

W.I.o.g. $d=\alpha^{-1+\varepsilon}$, so iteration 0 is the first time the robots can meet.

For each iteration starting with 0 we track the fraction of the robots:
x) going towards each other (and thus meeting)
y) running in parallel
z) going away from each other

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots
i	x_{i}	y_{i}	z_{i}

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots
i	x_{i}	y_{i}	z_{i}
$i+1$	$x_{i}+p(1-p) y_{i}$	$\left(p^{2}+(1-p)^{2}\right) y_{i}$	$p(1-p) y_{i}$
	$+p^{2} z_{i}$	$+2 p(1-p) z_{i}$	$+(1-p)^{2} z_{i}$

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots
i	x_{i}	y_{i}	z_{i}
$i+1$	$x_{i}+p(1-p) y_{i}$	$\left(p^{2}+(1-p)^{2}\right) y_{i}$	$p(1-p) y_{i}$
	$+p^{2} z_{i}$	$+2 p(1-p) z_{i}$	$+(1-p)^{2} z_{i}$

Define generating functions $\bar{X}:=X(t):=\sum_{i=0}^{\infty} x_{i} t^{i}$

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots
i	x_{i}	y_{i}	z_{i}
$i+1$	$x_{i}+p(1-p) y_{i}$	$\left(p^{2}+(1-p)^{2}\right) y_{i}$	$p(1-p) y_{i}$
	$+p^{2} z_{i}$	$+2 p(1-p) z_{i}$	$+(1-p)^{2} z_{i}$

Define generating functions $\bar{X}:=X(t):=\sum_{i=0}^{\infty} x_{i} t^{i}, \bar{Y}, \bar{Z}$.

Distribution over Markov States

i	x_{i}	y_{i}	z_{i}
0	0,25	0,5	0,25
1	0,46	0,38	0,16
2	0,609	0,274	0,117
\vdots	\vdots	\vdots	\vdots
i	x_{i}	y_{i}	z_{i}
$i+1$	$x_{i}+p(1-p) y_{i}$	$\left(p^{2}+(1-p)^{2}\right) y_{i}$	$p(1-p) y_{i}$
	$+p^{2} z_{i}$	$+2 p(1-p) z_{i}$	$+(1-p)^{2} z_{i}$

Define generating functions $\bar{X}:=X(t):=\sum_{i=0}^{\infty} x_{i} t^{i}, \bar{Y}, \bar{Z}$.

$$
\bar{X}=\bar{X} t+p(1-p) \bar{Y} t+p^{2} \bar{Z} t+0,25
$$

Generating Functions

Define generating functions $\bar{X}:=X(t):=\sum_{i=0}^{\infty} x_{i} t^{i}, \bar{Y}, \bar{Z}$.

$$
\begin{array}{lrr}
\bar{X}=\bar{X} t+ & p(1-p) \bar{Y} t+ & p^{2} \bar{Z} t+\frac{1}{4} \\
\bar{Y}= & \left(p^{2}+(1-p)^{2}\right) \bar{Y} t+ & 2 p(1-p) \bar{Z} t+\frac{1}{2} \\
\bar{Z}= & p(1-p) \bar{Y} t+ & (1-p)^{2} \bar{Z} t+\frac{1}{4}
\end{array}
$$

Generating Functions

Define generating functions $\bar{X}:=X(t):=\sum_{i=0}^{\infty} x_{i} t^{i}, \bar{Y}, \bar{Z}$.

\[

\]

Computing the Competitive Ratio

$$
\begin{array}{rlll}
& x_{i} & y_{i} & z_{i} \\
0 & 0,25 & 0,5 & 0,25 \\
1 & 0,46 & 0,38 & 0,16 \\
2 & 0,609 & 0,274 & 0,117 \\
\vdots & \vdots & \vdots & \vdots \\
\bar{Y}(t)= & \sum_{i=0}^{\infty} y_{i} t^{i}= & \frac{1}{1-p^{2}-(1-p)^{2} t+\frac{2 p^{2}(1-p)^{2} t}{1-(1-p)^{2} t}}
\end{array}
$$

Computing the Competitive Ratio

$$
\begin{array}{clll}
& \begin{array}{llll}
& x_{i} & y_{i} & z_{i} \\
0 & 0,25 & 0,5 & 0,25 \\
1 & 0,46 & 0,38 & 0,16 \\
2 & 0,609 & 0,274 & 0,117 \\
\vdots & \vdots & \vdots & \vdots \\
\bar{Y}(t)= & \sum_{i=0}^{\infty} y_{i} t^{i}=\frac{}{1-p^{2}-(1-p)^{2} t+\frac{1}{4 p^{2}(1-p)^{2} t}} 1-(1-p)^{2} t
\end{array} \\
C R(\alpha ; p)= & \sum_{-\infty}^{0} 2 \alpha^{i}+1+\alpha \sum_{0}^{\infty} 2 y_{i} \alpha^{i}+\alpha \sum_{0}^{\infty} 2 z_{i} \alpha^{i}
\end{array}
$$

Computing the Competitive Ratio

$$
C R(\alpha ; p)=\sum_{-\infty}^{0} 2 \alpha^{i}+1+\alpha \sum_{0}^{\infty} 2 y_{i} \alpha^{i}+\alpha \sum_{0}^{\infty} 2 z_{i} \alpha^{i}
$$

Computing the Competitive Ratio

$$
\begin{aligned}
C R(\alpha ; p) & =\sum_{-\infty}^{0} 2 \alpha^{i}+1+\alpha \sum_{0}^{\infty} 2 y_{i} \alpha^{i}+\alpha \sum_{0}^{\infty} 2 z_{i} \alpha^{i} \\
& =\frac{2}{1-\frac{1}{\alpha}}+1+2 \alpha \bar{Y}(\alpha)+2 \alpha \bar{Z}(\alpha)
\end{aligned}
$$

Computing the Competitive Ratio

$$
\begin{aligned}
C R(\alpha ; p) & =\sum_{-\infty}^{0} 2 \alpha^{i}+1+\alpha \sum_{0}^{\infty} 2 y_{i} \alpha^{i}+\alpha \sum_{0}^{\infty} 2 z_{i} \alpha^{i} \\
& =\frac{2}{1-\frac{1}{\alpha}}+1+2 \alpha \bar{Y}(\alpha)+2 \alpha \bar{Z}(\alpha)
\end{aligned}
$$

We can achieve competitive ratio $C R(1,16 ; 0,6) \approx 26,33$

Proof Pattern

1. Determine possible worst case starting distances
2. Compute the stationary distribution of the markov chain
3. Determine generating functions for all markov states
4. Resolve everything to determine the exact competitive ratio

Markov "Spiral"

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

Markov "Spiral"

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_{i}= \pm \alpha^{i}$ and stores its last b choices.

Markov "Spiral"

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

During iteration $i \in \mathbb{Z}$ a robot moves to position $f_{i}= \pm \alpha^{i}$ and stores its last b choices.

For each choice history $h \in\{-1,+1\}^{b}$ we go to $f_{i+1}=-\alpha \cdot f_{i}$ with propability p_{h}.

Proof Pattern

1. Determine possible worst case starting distances
2. Compute the stationary distribution of the markov chain
3. Determine generating functions for all markov states
4. Resolve everything to determine the exact competitive ratio

Markov "Spiral"

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

Markov Spiral

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

Fix all "choices" in advance.

Markov Spiral

Fix scaling factor α, a memory depth of b bits and markov transition probabilities $p \in[0,1]^{b}$

Fix all "choices" in advance.

For consecutive visits to the same side, "bend" the path outwards.

Proof Pattern

1. Determine possible worst case starting distances
2. Compute the stationary distribution of the markov chain
3. Determine generating functions for all markov states
4. Resolve everything to determine the exact competitive ratio

Markov Spiral

Choosing $\alpha=1,205, b=5$ and

$$
\begin{aligned}
p= & (1.00,1.00,1.00,1.00,1.00,0.59,1.00,0.00 \\
& 1.00,0.25,0.78,0.44,1.00,0.09,0.53,0.00 \\
& 1.00,0.00,0.42,1.00,1.00,0.31,1.00,0.00 \\
& 1.00,0.29,0.33,0.50,1.00,0.59,0.00,0.00)
\end{aligned}
$$

yields a 17, 48-competitive strategy.

Markov Spiral

Choosing $\alpha=1,205, b=5$ and

$$
\begin{aligned}
p= & (1.00,1.00,1.00,1.00,1.00, \mathbf{0 . 5 9}, 1.00,0.00 \\
& 1.00, \mathbf{0 . 2 5}, \mathbf{0 . 7 8}, \mathbf{0 . 4 4}, 1.00, \mathbf{0 . 0 9}, \mathbf{0 . 5 3}, 0.00 \\
& 1.00,0.00, \mathbf{0 . 4 2}, 1.00,1.00, \mathbf{0 . 3 1}, 1.00,0.00 \\
& 1.00, \mathbf{0 . 2 9}, \mathbf{0 . 3 3}, \mathbf{0 . 5 0}, 1.00, \mathbf{0 . 5 9}, 0.00,0.00)
\end{aligned}
$$

yields a 17, 48-competitive strategy.

Recap

Baston and Gal	$\mathbf{2 6 , 6 6}$
Biased "Spiral"	$\mathbf{2 6 , 3 3}$
Ozsoyeller, Beveridge and Isler	$\mathbf{2 4 , 8 4}$
Zig-Zag	20.86
Biased Zig-Zag	19,98
"Markov" Zig-Zag	18,96
"Markov" Zig	17,48
Markov Spiral	$\mathbf{1 7 , 4 8}$
"Markov" Zig with Magnets	16,84
$\quad \vdots$	\vdots
2D-Rendezvous with I_{1}-norm	$\mathbf{9 , 1 8 2}$
Cowpath	$\mathbf{4 , 5 9 1}$

