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Goal is to solve:

min
x∈X

5 (x)

Where 5 (x) is a convex function and X is a compact convex set.
How can we tackle the problem?
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1. Projected Newton Method:

For C ≥ 0 and 0 < WC ≤ 1 do:

xC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 +
1

2WC
‖x − xC ‖∇2 5 (xC ) .

This is equivalent to:

xC+1 = argmin
x∈X




x − (
xC − WC [∇2 5 (xC )]−1∇ 5 (xC )

)


2
∇2 5 (xC )

.
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1. Projected Newton Method:

X
5 (x)

x:

5 (x:)+ < ∇ 5 (x:), x − x: > + 1
2W:
| |x − x: | |2∇2 5 (x: )

−∇ 5 (x:)

x:+1

Downside:

Computing ∇2 5 (xC ) can be very expensive

Need to solve a quadratic problem over X
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2. Projected Gradient Descent:

For C ≥ 0 and 0 < WC ≤ 1 do:

xC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 +
1

2WC
‖x − xC ‖2

This is equivalent to:

xC+1 = argmin
x∈X

‖x − (xC − WC∇ 5 (xC ))‖2 .
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3. Conditional Gradients (CG) [LP66]:

Also known as the Frank-Wolfe (FW) algorithm ([FW56]). For
C ≥ 0 do:

vC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 .

And for some 0 < WC ≤ 1 take:

xC+1 = xC + WC (vC+1 − xC )
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3. Conditional Gradients (CG) [LP66]:

X
5 (x)

x:

5 (x:)+ < ∇ 5 (x:), x − x: >

−∇ 5 (x:)

v:

Downside:

Computing ∇2 5 (xC ) can be very expensive

Need to solve a quadratic problem over X
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This leads to the ”The Poor Man’s Approach to Convex
Optimization and Duality” [Jag11]:

Algorithm 1 CG algorithm.

Input: G0 ∈ X, stepsizes WC ∈ (0, 1].

1: for C = 0 to ) do
2: vC = argminx∈X 〈∇ 5 (xC ), x〉
3: xC+1 = xC + WC (vC − xC )
4: end for

At each iterate we can use:

First-order (FO) oracle to access ∇ 5 (x)

Linear optimization (LO) oracle to solve argminx∈X

〈 ⃗⃗
), x

〉
for

some
⃗⃗∈⃗ℝ=
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Frank-Wolfe gap.

At each iterate we can immediately compute the Frank-Wolfe-gap
6(xC ):

6(xC )
def
= 〈∇ 5 (xC ), xC − vC〉 = max

v∈X
〈∇ 5 (xC ), xC − v〉 ,

an upper bound on the primal gap, which can be used as a
stopping criterion when running these algorithms:

6(xC ) = max
v∈X
〈∇ 5 (xC ), xC − v〉

≥ 〈∇ 5 (xC ), xC − x∗〉
≥ 5 (xC ) − 5 (x∗).

Where the last inequality follows
from the convexity of 5 .

f(x)

xx∗xt v1

f(xt)

v0

f(xt)+ < ∇f(xt),x− xt >

f(x∗)
max
v∈X

< ∇f(xt),xt − v >
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Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.

Projection-free. Projection into certain feasible regions is
computationally expensive: Birkhoff polytope and flow polytope
are a few examples.

Sparse solutions. Solution is a convex combination of (a typically
sparse set of) extreme points.

Stopping criterion. At each iteration the Frank-Wolfe gap gives
us an upper bound on the primal gap.
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Convergence rate for !-smooth and convex 5

Theorem (Primal gap convergence rate of CG/FW)

The CG/FW algorithm using WC = 2/(2 + C) converges at a rate of
5 (xC ) − 5 (x∗) = O(1/C) [FW56; DH78]. Moreover, the Frank-Wolfe
gap satisfies min

0≤C≤)
6(xC ) = O(1/C) for ) ≥ 1 [Jag13].

The aforementioned primal gap convergence rate is optimal for the
class of algorithms that only add a single vertex at each iteration
[Jag13; Lan13].
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What about !-smooth and `-strongly convex 5 ?

In general: Sublinear convergence.

Example (CG Convergence.)

!-smooth and `-strongly convex 5 with G ∈ ℝ2, and G∗ in
boundary of X using line search.

x0

-0.30.
0

0.5

1.0

1.7

x1

x2 x3
x4 x5

x∗
0 2000 4000 6000 8000 10000

t

10−4

10−3

10−2

10−1

f
(x

t)
−
f
∗

CG
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Linear convergence when X is a polytope is achieved by allowing
steps that decrease the weight of bad vertices [GH15]. This has
led to various CG variants:

Away-step Conditional Gradients (ACG)

x0

-0.30.
0

0.5

1.0

1.7

x1

x2

x3

x∗

Figure: Away-step CG (ACG)

Allow steps in the direction of:

xC − argmax
u∈S

〈∇ 5 (xC ), u〉 ,

where S is the active set of xC .
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Pairwise-step Conditional Gradients (PCG)

x0

-0.30.
0
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x3
x∗

Figure: Pairwise-step CG

Move along:

argmin
v∈X

〈∇ 5 (xC ), v〉 − argmax
u∈S

〈∇ 5 (xC ), u〉 ,

where S is the active set of xC .
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Convergence rate for !-smooth `-strongly convex 5 .

Theorem (Convergence rate of ACG and PCG.)

If X is a polytope, then the ACG and PCG algorithms with line

search satisfy that 5 (xC ) − 5 (x∗) = O
(
1 − `

!

(
X
�

)2) : (C)
[LJ15] where

� and X are the diameter and pyramidal width of the polytope X

100 102 104
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x t
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CG
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CG Global Acceleration

However, we know that optimal methods for this class of functions

achieve an n solution in ) = O
(√

!
`
log 1

n

)
first-order calls [NY83;

Nes83].

Can CG achieve these convergence rates globally?

Dimension independent global acceleration
is not possible [Jag13; Lan13].
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Conditional Gradient Sliding

Idea: Run Nesterov’s Accelerated Gradient Descent, use CG to
solve the projection subproblems approximately [LZ16].

Results:

Separate LO and FO oracle calls.

Globally optimal O
(√

!
`
log 1

n

)
calls to FO and

O
(
!�2

n
+

√
!
`
log 1

n

)
calls to LO oracles.

Convergence rates independent of the dimension =.
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Catalyst Augmented ACG.

Idea: Run Accelerated Proximal Method and solve proximal
problems with a linearly convergent CG [LMH15].

Results:

O
(√

!−`
`

(
�
X

)2
log 1

n

)
Calls to FO and LO oracles.

Convergence rates dependent of the dimension =.
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Summary

Complexity for !-smooth `-strongly convex 5 .

Algorithm LO Calls FO Calls

CG Variants O
(
!
`

(
�
X

)2
log 1

n

)
O

(
!
`

(
�
X

)2
log 1

n

)
CGS O

(
!�2

n
+

√
!
`
log 1

n

)
O

(√
!
`
log 1

n

)
Catalyst O

(√
!−`
`

(
�
X

)2
log 1

n

)
O

(√
!−`
`

(
�
X

)2
log 1

n

)
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Objectives:

Dimension independent global acceleration.
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Objectives:

Dimension independent global acceleration.

Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

X x∗

x0

Accelerated

Unaccelerated

After a constant number of iterations, accelerate the convergence.
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Locally Accelerated Conditional Gradients (LaCG).

The key ingredients is the Approximate Duality Gap technique
[DO19] and a Modified `AGD algorithm [CDO18; DCP20].

Theorem (Convergence rate of `AGD.)

Let 5 be !-smooth and `-strongly convex and let {C8}C8=0 be a
sequence of convex subsets of X such that C8 ⊆ C8−1 for all 8 and
G∗ ∈ ∩C

8=0C8, then the `AGD achieves an n-optimal solution in:

) = O
(√

!

`
log

1

n

)
How do we build {C8}C8=0 in an efficient way?
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There exists an A > 0 (that depends only on 5 and X) s.t. if
‖G∗ − G ‖ ≤ A ⇒ G∗ ∈ 2>=E (SC ) for all C ≥  , where SC is the
active set at iteration C.

X x∗
r

So when we are inside the red semicircle and we use CC = SC ,
acceleration is possible.
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Naively, what we would like:

X x∗

CG
µAGD

x0

But since the value of A is not known, we don’t know when to
switch from CG to `AGD.
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Run ACG and restart AGD by running it over a new conv (SC )
every � iterations.

X x∗
r

x0

Trajectory AFW iterates

Restart

Every � iterations restart AGD and run it over conv (SC ).
Have AGD and ACG compete for progress at each iteration between

restarts.

Space out restarts so that you only loose a factor of 2 in the AGD

convergence rate.
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What we will obtain:

X x∗
r

x0

AFW-driven convergence

AGD-driven convergence

Restart
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Locally Accelerated Conditional Gradients (LaCG)

Algorithm 2 Locally Accelerated Conditional Gradients

1: Initialize C0 = S0, G0 = G���0 = G���0 , � = O
(√

!
`
log !

`

)
2: for C = 1 to ) do
3: G���

C+1 , SC+1 ← ��� (G���C , SC ) ⊲ ACG step

4: if Vertex has been added to S since restart then
5: if C = �= for some = ∈ ℕ then
6: G���

C+1 ← argmin
G∈{G���C ,G���C } 5 (G) ⊲ Restart AGD

7: CC+1 ← Update based on previous line.
8: else
9: G���

C+1 ← ��� (G���C , CC ) ⊲ Run AGD decoupled from ACG

10: CC+1 ← CC
11: end if
12: else
13: G���

C+1 ← ��� (GC , CC ) ⊲ Run AGD coupled with ACG

14: CC+1 ← conv (SC+1)
15: end if
16: GC+1 ← argmin

G∈{G���
C+1 ,G���

C+1 ,GC } 5 (G) ⊲ Monotonicity

17: end for
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Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let 5 be !-smooth and `-strongly convex and let A be the critical
radius. The number of steps ) required to reach an n-optimal
solution to the minimization problem satisfies:

C = <8=

{
O

(
!

`

(
�

X

)2
log

1

n

)
,  + O

(√
!

`
log

1

n

)}
,

where  = 8!
`

(
�
X

)2
log

(
2( 5 (G0)− 5 ∗)

`A2

)
.

X x∗
r

x0

AFW-driven convergence

AGD-driven convergence

Restart
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Computational Results.

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in ℝ1500 with !/` = 1000.

100 101 102 103 104

k

10 4

10 2

100

102

f(x
k)

f*

AFW
PFW
DICG
LaCG-AFW
LaCG-PFW

Figure: Primal gap vs. iteration

0 5 10 15 20 25
t[s]

10 4

10 2

100

102

Figure: Primal gap vs. time

When close enough to G∗ (after burn-in phase), there is a
significant speedup in the convergence rate.
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Birkhoff polytope in ℝ400G400 with !/` = 100.
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Figure: Primal gap vs. iteration
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Figure: Primal gap vs. time
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Structured Regression over MIPLIB Polytope
(ran14x18-disj-8).
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Figure: Primal gap vs. time
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Congestion Balancing in Traffic Networks.
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Joint work with Jelena Diakonikolas and Sebastian Pokutta. See
Locally Accelerated Conditional Gradients in International
Conference on Artificial Intelligence and Statistics (2020) for more
details.

http://proceedings.mlr.press/v108/diakonikolas20a/diakonikolas20a.pdf
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Problem setting

Consider the case where:

Computing ∇ 5 (x) and ∇2 5 (x), although possible, is
expensive.

There is no access to a stochastic oracle for ∇ 5 (x).
The feasible region is a polytope X

Unfortunately, zeroth-order algorithms (those that only use
function value oracles) are not efficient in high dimensions, and so
we must try to make as much primal progress as possible per first
and second order oracle call.
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Background

Conditional Gradient Sliding: Run Nesterov’s Accelerated
Gradient Descent, use CG to solve the projection subproblems
approximately [LZ16].

Idea: Why not use ACG to approximately solve the
scaled-projection subproblems in Newton’s method with unit
step size? That is, compute:

xC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 +
1

2
‖x − xC ‖∇2 5 (xC )

= argmin
x∈X




x − (
xC − [∇2 5 (xC )]−1∇ 5 (xC )

)


2
∇2 5 (xC )

.

Why?: If these scaled projections are computed exactly, the steps
contract ‖xC − x∗‖ quadratically once close enough to the
optimum.
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What we want:

Global linear convergence in primal gap

Local quadratic convergence in primal gap

Use of inexact second-order oracles, use �: , an approximation
to ∇2 5 (x:)

Template:

Compute an Y:-optimal scaled projection (Newton step with
unit step size) using ACG

Compute an independent ACG step with line search

Take the iterate with lowest function value



Conditional Gradients Locally Accelerated Conditional Gradients Second-Order Conditional Gradient Sliding References

What we want:

Global linear convergence in primal gap

Local quadratic convergence in primal gap

Use of inexact second-order oracles, use �: , an approximation
to ∇2 5 (x:)

Template:

Compute an Y:-optimal scaled projection (Newton step with
unit step size) using ACG

Compute an independent ACG step with line search

Take the iterate with lowest function value



Conditional Gradients Locally Accelerated Conditional Gradients Second-Order Conditional Gradient Sliding References

Assumptions

Accuracy of the Hessian oracle:
The oracle Ω queried with a point x: returns a matrix �: with a
parameter [ = max{_max(�−1: ∇

2 5 (x:)), _max( [∇2 5 (x:)]−1�:)}
such that:

[ − 1
‖x: − x∗‖2

≤ l,

where l ≥ 0 denotes a known constant.

Lower bound on the primal gap:
We compute Y: using a lower bound on the primal gap that
satisfies ;1 (x:) ≤ 5 (x:) − 5 (x∗).

Strict Complementarity:
We have that 〈∇ 5 (x∗) , x − x∗〉 = 0 if and only if x ∈ F (x∗), where
F (x∗) is the minimal face that contains x∗.
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Algorithm 3 Second-order Conditional Gradient Sliding Algorithm
1: x0, x

ACG
0 ← argminv∈X 〈∇ 5 (x) , v〉

2: SACG
:+1 ← {x0 }

3: for C = 1 to ) do

4: xACG
:+1 , S

ACG
:+1 ← ACG

(
xACG
:

, SACG
:

)
⊲ ACG step

5: 5̂: (x) ← 〈∇ 5 (x: ) , x − x: 〉 + 1
2 ‖x − x: ‖

2
�:

⊲ Quadratic Approximation

6: Y: ←
(
;1 (x: )
‖∇ 5 (x: ) ‖

)4
7: Find x̃:+1 such that max

v∈X
〈∇ 5̂: (x̃:+1) , x̃:+1 − v〉 < Y: using ACG ⊲ Minimize 5̂:

8: if 5 (x̃:+1) ≤ 5 (xACG:+1 ) then

9: x:+1 ← x̃:+1 ⊲ Choose PVM step
10: else
11: x:+1 ← xACG

:+1 ⊲ Choose ACG step

12: end if
13: end for



Conditional Gradients Locally Accelerated Conditional Gradients Second-Order Conditional Gradient Sliding References

Convergence rate of SOCGS

Theorem (Convergence rate of SOCGS)

Let 5 be !-smooth and `-strongly convex and X be a polytope.
Under the assumptions given before, the SOCGS algorithm
achieves a Y-optimal solution after O (log log 1/Y) first and second
order oracle calls and O (log (1/Y) log log 1/Y) linear oracle calls,
after a burn-in phase independent of Y.

Informal proof sketch:

The inexact Newton steps converge quadratically in distance
to the optimum.

After a finite number of iterations, both the ACG and Newton
iterations are contained in F ∗

Using smoothness and strong convexity one can show that
then the quadratic rate in distance to the optimum is a
quadratic rate in primal gap.
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Computational Results.

Sparse coding over the Birkhoff polytope in ℝ80×80 with
100000 samples.
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Logistic regression over the ℓ1 ball in ℝ5000.
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Inverse covariance estimation over the spectrahedron in
ℝ50×50.
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Joint work with Sebastian Pokutta. See Second-order Conditional
Gradient Sliding on arXiv for the full details.

https://arxiv.org/abs/2002.08907
https://arxiv.org/abs/2002.08907
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Thank you
for your attention.
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